Skip to main content

Advertisement

Log in

Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Polymer composite films based on PVA–PVP with AlCl3 as the dopant at different concentrations were prepared using solution casting technique. XRD patterns reveal the increase in amorphousity of the films with AlCl3 doping. Optical absorption studies exhibit that the values of optical absorption coefficient, direct and indirect optical band gaps are found to decrease with increase in AlCl3 concentration. It confirms the charge transfer in complexes between the polymer and the dopant. The dielectric studies show the increase in dielectric constant at low frequency with increasing AlCl3 concentration and temperature. The ac conductivity and ionic conductivity increase with the AlCl3 content and the maximum value at room temperature is found to be 6.89 × 10−4 and 8.05 × 10−5 S/cm for higher AlCl3 doped PVA–PVP film. The estimated ionic conductivity value is three or four orders of magnitude greater than those obtained in the certain representative polymer-salt complexes as reported earlier. Electrical modulus plots confirm the removal of electrode polarization and the low conductivity relaxation time with Al doping. The activation energy estimated from the temperature dependent dc conductivity plot is agreed well with the migration energy calculated from the temperature dependent electric modulus plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M B Armond Ann. Rev. Mater. Sci. 16 245 (1986)

    Article  ADS  Google Scholar 

  2. M A Ratner and D F Shriver Chem. Rev. 88 109 (1988)

    Article  Google Scholar 

  3. M Watanabe, K Sanui, N Ogata, F Inoue, T Kobayashi and Z Ohtaki Polym. J. 16 711 (1984)

  4. L Lee, S Park and S Kim Solid State Ionics 234 19 (2013)

    Article  Google Scholar 

  5. M C Wintergrill, J J Fontanella, M K Smith, S S Greenbaum, K J Adam and C C Andeen Polymer 28 633 (1987)

    Article  Google Scholar 

  6. J Procharski, W Wiecxorek, J Przyluski and K Such Appl. Phys. A. 49 55 (1989)

    Article  ADS  Google Scholar 

  7. N Reddeppa, T J R Reddy, V B S Achari, V V R N Rao and A K Sharma Ionics 15 255 (2009)

    Article  Google Scholar 

  8. Y H Liang, C.Y. Hung and C C Wang J. Power Sour. 188 261 (2009)

    Article  ADS  Google Scholar 

  9. R Baskaran, S Selvasekarapandian, N Kuwata, J Kawamura and T Hattori Mater. Chem. Phys. 98 55 (2006)

    Article  Google Scholar 

  10. N F Mott and E A Davis Electronic Processes in Non-crystalline Materials, 2nd edn. (Oxford: Clarendon Press) W H Marshall and D H Wilkinson 270 (1972)

  11. S Ramesh and O L Ling Polym. Chem. 1 702 (2010)

    Article  Google Scholar 

  12. B Natesan, N K Karan and R S Katiyar Phys. Rev. E. 74 042801 (2006)

    Article  ADS  Google Scholar 

  13. H M Ragab Physica B. 406 3759 (2011)

    Article  ADS  Google Scholar 

  14. M Hema, S Selvasekerapandian, A Sakunthala, D Arunkumar and H Nithya Physica B. 403 2740 (2008)

    Article  ADS  Google Scholar 

  15. V Krishnakumar and G Shanmugam Ionics 18 403 (2012)

    Article  Google Scholar 

  16. K Kiran Kumar, M Ravi, Y Pavani, S Bhavani, A K Sharma and V V R Narasimha Rao Phys. B. 406 1706 (2011)

    Article  ADS  Google Scholar 

  17. M A F Basha Polym. J. 42 728 (2010)

    Article  Google Scholar 

  18. N Imanaka, Y Hasegawa, M Yamaguchi, M Itaya, S Tamura and G Adachi Chem. Mater. 14 4481 (2002)

    Article  Google Scholar 

  19. L Zhang, P Chen, Z Hu and C Chen-hua Chin. J. Chem. Phys. 25 703 (2012)

    Article  ADS  Google Scholar 

  20. G K Prajapati and P N Gupta Physica B. 406 3108 (2011)

    Article  ADS  Google Scholar 

  21. R M Hodge, G H Edwrd and E P Simon Polymer. 37 1371 (1996)

  22. A A Mohamad, N S Mohamad, M Z A Yahya, R Othman, S Ramesh, Y Alias and A K Aroof Solid State Ionics. 156 171 (2003)

    Article  Google Scholar 

  23. E M Abdelrazek Physica B. 403 2137 (2008)

    Article  ADS  Google Scholar 

  24. Y Aydogdu, F Yakuphanoglu, A Aydodu, E Tas and A Cukuraval Solid State Sci. 4 879 (2002)

    Article  ADS  Google Scholar 

  25. J R MacCullum and C R Vincent Polymer Electrolytes Reviews-2 (England: Elsevier Science Publishers Ltd) (1989)

    Google Scholar 

  26. A Awadhia, S K Patel and S L Agrawal Prog. Cryst. Growth Charact. Mater. 52 61 (2006)

    Article  Google Scholar 

  27. X Sun, T Fujimoto and H Uyama Polym. J 45 1101 (2013)

  28. P Sharma and D K Kanchan Polym. Int. 63 290 (2014)

    Article  Google Scholar 

  29. M Watanabe, S Nagona, K Sanui and N Ogato J. Power Sour. 20 327 (1987)

    Article  ADS  Google Scholar 

  30. D K Pradhan, R N P Choudhary and B K Samantaray Express Polym. Lett. 2 630 (2008)

    Article  Google Scholar 

  31. V Krishnakumar and G Shanmugam Sci. Adv. Mater. 4 1247 (2012)

    Article  Google Scholar 

  32. S- W Ryu Polym. J. 40 688 (2008)

  33. G Hirankumar, S Selvasekarapandian, M S Bhuvaneswari, R Baskaran and M Vijayakumar J. Solid State Electrochem. 10 193 (2006)

    Article  Google Scholar 

  34. S B Aziz, Z H Z Abidin and A K Arof Express Polym. Lett. 4 300 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from University Grants Commission (UGC), New Delhi, India, to undertake this work (Grant No. F.39-494/2010 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, G., Krishnakumar, V. Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films. Indian J Phys 92, 605–613 (2018). https://doi.org/10.1007/s12648-017-1140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1140-x

Keywords

PACS Nos.

Navigation