Skip to main content

Advertisement

Log in

Recent progress of nanomaterials in sustainable agricultural applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanomaterials have shown immense potential for their versatile applications in various sectors like medicine, healthcare, food sector, environment, agriculture, electronics, and pharmaceutics due to their unique and tunable physicochemical properties attributed to their small sizes. Recently nanomaterials have garnered foremost interest in agricultural applications due to constructive results of various studies showing significantly better crops growth/yield as compared to traditional fertilizers and pesticides. Besides, nanomaterials have shown encouraging results to deal with problems associated with conventional fertilizers, such as low nutrient usage efficiency and unregulated nutrient release with no precise control on the nutrients delivery. Moreover, nanomaterials have positively impacted plants growth attributing to higher chlorophyll content in leaves, increased root/shoot lengths, and better stress tolerance. Furthermore, nanomaterials are extremely capable of disease detection in plants and soil remediation. In this review, we have attempted to provide the readers with a complete overview of nanomaterials in agriculture by implementing the ideas of precision farming. Hereby, we have deliberated the development of nanomaterials in agriculture in the form of nanofertilizers, nanopesticides and nanosensors for sustainable growth in crops productivity, quality and protection. We have also illuminated the possibility of integrated farm management via soil remediation using nanotechnology. Finally, we have explicated limitations and possible improvements of nanomaterials for sustainable agricultural applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figuer 4
Figure 5

Similar content being viewed by others

Abbreviations

NPs:

Nanoparticles

MONPs:

Metal oxide nanoparticles

CNTs:

Carbon nanotubes

CVD:

Chemical vapor deposition

MOCVD:

Metal–organic chemical vapor deposition

ALE:

Atomic layer epitaxy

VPE:

Vapor phase epitaxy

PECVD:

Plasma enhanced chemical vapor deposition

MRSA:

Methicillin-resistant staphylococcus aureus

ATCC:

American type culture collection

CNMs:

Carbon nanomaterials

HANs:

Hydroxyapatite nanoparticles

31P NMR:

Phosphorus -31 nuclear magnetic resonance

CMC:

Carboxymethyl cellulose

CuO NPs:

Copper oxide nanoparticles

TiO2 :

Titanium dioxide

LDH:

Layered double hydroxide

DDT:

Dichloro diphenyl trichloroethane

References

  1. Ngoune Liliane T, Shelton Charles M (2020) Factors affecting yield of crops. In: Agronomy-climate change & food security. pp 1–16. https://doi.org/10.5772/intechopen.90672

  2. Bowonder B (1979) Impact analysis of the green revolution in India. Technol Forecast Soc Chang 15:297–313. https://doi.org/10.1016/0040-1625(79)90023-4

    Article  Google Scholar 

  3. Parayil G (1992) The green revolution in India: a case study of technological change. Technol Cult 33:737. https://doi.org/10.2307/3106588

    Article  Google Scholar 

  4. Singh RB (2000) Environmental consequences of agricultural development: a case study from the green revolution state of Haryana India. Agric Ecosyst Environ 82:97–103. https://doi.org/10.1016/S0167-8809(00)00219-X

    Article  Google Scholar 

  5. Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol Appl Sci 7:3325–3335. https://doi.org/10.20546/ijcmas

    Article  Google Scholar 

  6. Zhao L, Lu L, Wang A et al (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68:1935–1947. https://doi.org/10.1021/acs.jafc.9b06615

    Article  CAS  Google Scholar 

  7. Duhan JS, Kumar R, Kumar N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  8. Singh RP, Handa R, Manchanda G (2021) Nanoparticles in sustainable agriculture: an emerging opportunity. J Control Release 329:1234–1248

    Article  CAS  Google Scholar 

  9. Fayaz M, Rabani MS, Wani SA, Thoker SA (2021) Nano-agriculture: a novel approach in agriculture. In: Hakeem KR, Dar GH, Mehmood MA, Bhat RA (eds) Microbiota and biofertilizers. Springer, Cham, pp 99–122. https://doi.org/10.1007/978-3-030-48771-3_7

  10. Sangeetha J, Hospet R, Thangadurai D et al (2021) Nanopesticides, nanoherbicides, and nanofertilizers: the greener aspects of agrochemical synthesis using nanotools and nanoprocesses toward sustainable agriculture. In: Kharissova OV, Torres-Martínez LM, Kharisov BI (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham, pp 1663–1677. https://doi.org/10.1007/978-3-030-36268-3_44

  11. Ahari H, Karim G, Anvar AA et al (2018) Synthesis of the silver nanoparticle by chemical reduction method and preparation of nanocomposite based on AgNPS. In: Proceedings of the world congress on mechanical, chemical, and material engineering

  12. Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:46. https://doi.org/10.1016/j.jmmm.2006.05.001

    Article  CAS  Google Scholar 

  13. Maity D, Ding J, Xue JM (2008) Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett 1:189–193. https://doi.org/10.1142/S1793604708000381

    Article  CAS  Google Scholar 

  14. Muthukumar K, Lakshmi DS, Acharya SD et al (2018) Solvothermal synthesis of magnetic copper ferrite nano sheet and its antimicrobial studies. Mater Chem Phys 209:172–179. https://doi.org/10.1016/j.matchemphys.2018.02.004

    Article  CAS  Google Scholar 

  15. Muradov MB, Balayeva OO, Azizov AA et al (2018) Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared Phys Technol 89:255–262. https://doi.org/10.1016/j.infrared.2018.01.014

    Article  CAS  Google Scholar 

  16. Rycenga M, Camargo PHC, Xia Y (2009) Template-assisted self-assembly: a versatile approach to complex micro- and nanostructures. Soft Matter 5:1129–1136. https://doi.org/10.1039/b811021b

    Article  CAS  Google Scholar 

  17. Tricoli A, Nasiri N, Chen H et al (2016) Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Sol Energy 136:553–559. https://doi.org/10.1016/j.solener.2016.07.024

    Article  CAS  Google Scholar 

  18. Cho YY, Kuo C (2016) Optical and electrical characterization of electrospun Al-doped zinc oxide nanofibers as transparent electrodes. J Mater Chem C 4:7649–7657. https://doi.org/10.1039/c6tc02586b

    Article  CAS  Google Scholar 

  19. Dulgerbaki C, Maslakci NN, Komur AI, Oksuz AU (2015) Electrochromic device based on electrospun WO3 nanofibers. Mater Res Bull 72:70–76. https://doi.org/10.1016/j.materresbull.2015.07.024

    Article  CAS  Google Scholar 

  20. Manawi YM, Ihsanullah, Samara A et al (2018) A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (Basel) 11: 822

  21. Zhao X, Wei C, Gai Z et al (2020) Chemical vapor deposition and its application in surface modification of nanoparticles. Chem Pap 74:767–778

    Article  CAS  Google Scholar 

  22. Vozga I, Jorgaq Kaçani A (2020) Application of inert gas condensation. WJET 6(2):11–22

  23. Mazarío E, Mayoral A, Salas E et al (2016) Synthesis and characterization of manganese ferrite nanoparticles obtained by electrochemical/chemical method. Mater Des 111:646–650. https://doi.org/10.1016/j.matdes.2016.09.031

    Article  CAS  Google Scholar 

  24. Habibullah G, Viktorova J, Ruml T (2021) Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett 16:1–12

    Article  Google Scholar 

  25. Oza G, Reyes-Calderón A, Mewada A et al (2020) Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J Mater Sci 55:1309–1330. https://doi.org/10.1007/s10853-019-04121-3

    Article  CAS  Google Scholar 

  26. Madhubala V, Kalaivani T (2018) Phyto and hydrothermal synthesis of Fe 3 O 4 @ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies. Appl Surf Sci 449:584–590. https://doi.org/10.1016/j.apsusc.2017.12.105

    Article  CAS  Google Scholar 

  27. Desalegn B, Megharaj M, Chen Z, Naidu R (2018) Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil. Environ Technol Innov 11:142–152. https://doi.org/10.1016/j.eti.2018.05.007

    Article  Google Scholar 

  28. Kumar Sur U, Ankamwar B, Karmakar S et al (2018) Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Mater Today Proc 5:2321–2329

    Article  CAS  Google Scholar 

  29. Rautela A, Rani J, Debnath (Das) M (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different micro-organisms. J Anal Sci Technol 10:5. https://doi.org/10.1186/s40543-018-0163-z

  30. Vimalraj S, Ashokkumar T, Saravanan S (2018) Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed Pharmacother 105:440–448. https://doi.org/10.1016/j.biopha.2018.05.151

    Article  CAS  Google Scholar 

  31. Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ (2020) Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 89:208–219. https://doi.org/10.1016/j.procbio.2019.10.027

    Article  CAS  Google Scholar 

  32. Rajput S, Werezuk R, Lange RM, Mcdermott MT (2016) Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir 32:8688–8697. https://doi.org/10.1021/acs.langmuir.6b01813

    Article  CAS  Google Scholar 

  33. Molnár Z, Bódai V, Szakacs G et al (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22112-3

    Article  CAS  Google Scholar 

  34. Gudikandula K, Vadapally P, Singara Charya MA (2017) Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. OpenNano 2:64–78. https://doi.org/10.1016/j.onano.2017.07.002

    Article  Google Scholar 

  35. Saravanan M, Barik SK, MubarakAli D et al (2018) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226. https://doi.org/10.1016/j.micpath.2018.01.038

    Article  CAS  Google Scholar 

  36. Hossain A, Hong X, Ibrahim E et al (2019) Green synthesis of silver nanoparticles with culture supernatant of a bacterium pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen dickeya dadantii. Molecules 24:2303. https://doi.org/10.3390/molecules24122303

    Article  CAS  Google Scholar 

  37. De Carvalho JF, De Medeiros SN, Morales MA et al (2013) Synthesis of magnetite nanoparticles by high energy ball milling. Appl Surf Sci 275:84–87

    Article  Google Scholar 

  38. Saiphaneendra B, Srivastava C (2017) Synthesis of graphene-magnetite nanoparticle composite using mechanical milling and electrochemical exfoliation. JOM 69:1143–1148. https://doi.org/10.1007/s11837-016-2189-2

    Article  CAS  Google Scholar 

  39. Gonzalez-Martinez IG, Bachmatiuk A, Bezugly V et al (2016) Electron-beam induced synthesis of nanostructures: a review. Nanoscale 8:11340–11362

    Article  CAS  Google Scholar 

  40. Tang N, Jiang Y, Qu H, Duan X (2017) Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography. Nanotechnology 28:485301. https://doi.org/10.1088/1361-6528/aa905b

    Article  CAS  Google Scholar 

  41. Zhang L, Xu F, Wang J et al (2016) High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep 6:1–8. https://doi.org/10.1038/srep35934

    Article  CAS  Google Scholar 

  42. Shin HW, Son JY (2018) Ferromagnetic Fe2O3 nanopatterns prepared using dip-pen lithography. Solid State Commun 282:1–4. https://doi.org/10.1016/j.ssc.2018.07.006

    Article  CAS  Google Scholar 

  43. Rafique M, Rafique MS, Kalsoom U et al (2019) Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Opt Quantum Electron 51:1–11. https://doi.org/10.1007/s11082-019-1902-0

    Article  CAS  Google Scholar 

  44. Verma M, Kumar V, Katoch A (2018) Sputtering based synthesis of CuO nanoparticles and their structural, thermal and optical studies. Mater Sci Semicond Process 76:55–60. https://doi.org/10.1016/j.mssp.2017.12.018

    Article  CAS  Google Scholar 

  45. Verma M, Kumar V, Katoch A (2018) Synthesis of ZrO2 nanoparticles using reactive magnetron sputtering and their structural, morphological and thermal studies. Mater Chem Phys 212:268–273. https://doi.org/10.1016/j.matchemphys.2018.03.049

    Article  CAS  Google Scholar 

  46. El AH, Pierson JF, Atourki L et al (2020) Preparation and characterization of nanocomposite of Co:CuO by radio-frequency sputtering for solar selective absorber application. Thin Solid Films 709:138199. https://doi.org/10.1016/j.tsf.2020.138199

    Article  CAS  Google Scholar 

  47. Seyedi SM, Rabiee H, Shahabadi SMS, Borghei SM (2017) Synthesis of zero-valent iron nanoparticles via electrical wire explosion for efficient removal of heavy metals. Clean Soil Air Water 45:1600139. https://doi.org/10.1002/clen.201600139

    Article  CAS  Google Scholar 

  48. Das R, Das BK, Suryanarayana MV et al (2017) Generation of copper nanoparticles by electro-exploding wire technique for various pressures of the surrounding medium. Int J Eng Res Appl 07:66–73. https://doi.org/10.9790/9622-0707026673

  49. Zheng Q, Yu H, Xie X, Cai X (2020) Influence of wire parameters on the formability of DP600 steel sheets during wire explosion impact forming. Int J Adv Manuf Technol 108:3361–3372. https://doi.org/10.1007/s00170-020-05631-0

    Article  Google Scholar 

  50. Han R, Wu J, Zhou H et al (2020) Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation. Matter Radiat Extrem. 5:047201

    Article  CAS  Google Scholar 

  51. Lok CN, Ho CM, Chen R et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534. https://doi.org/10.1007/s00775-007-0208-z

    Article  CAS  Google Scholar 

  52. Some S, Kumar Sen I, Mandal A et al (2019) Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater Res Express 6:012001

    Article  Google Scholar 

  53. Chang H, Gao W, Sun X et al (2017) Preparation, characterization and antibiotic properties of silver-silicon nanocomposites. New J Chem 41:1313–1320. https://doi.org/10.1039/c6nj02916g

    Article  CAS  Google Scholar 

  54. Siddiqui MN, Redhwi HH, Achilias DS et al (2018) Green synthesis of silver nanoparticles and study of their antimicrobial properties. J Polym Environ 26:423–433. https://doi.org/10.1007/s10924-017-0962-0

    Article  CAS  Google Scholar 

  55. Singh A, Singh NB, Afzal S et al (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53:185–201. https://doi.org/10.1007/s10853-017-1544-1

    Article  CAS  Google Scholar 

  56. Badea ML, Iconaru SL, Groza A et al (2019) Peppermint essential oil-doped hydroxyapatite nanoparticles with antimicrobial properties. Molecules 24:2169. https://doi.org/10.3390/molecules24112169

    Article  CAS  Google Scholar 

  57. Gayathri B, Muthukumarasamy N, Velauthapillai D et al (2018) Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arab J Chem 11:645–654. https://doi.org/10.1016/j.arabjc.2016.05.010

    Article  CAS  Google Scholar 

  58. Medina Cruz D, Mi G, Webster TJ (2018) Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res Part A 106:1400–1412. https://doi.org/10.1002/jbm.a.36347

    Article  CAS  Google Scholar 

  59. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

    Article  CAS  Google Scholar 

  60. Malekzad H, Sahandi Zangabad P, Mirshekari H et al (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6:301–329

    Article  CAS  Google Scholar 

  61. Zhao X, Zhao H, Yan L et al (2020) Recent developments in detection using noble metal nanoparticles. Crit Rev Anal Chem 50:97–110

    Article  CAS  Google Scholar 

  62. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  CAS  Google Scholar 

  63. Agrawal S, Bhatt M, Rai SK et al (2018) Silver nanoparticles and its potential applications: a review. J Pharmacogn Phytochem 7:930–937

    Google Scholar 

  64. Liu G, Lu M, Huang X et al (2018) Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. Sensors (Switzerland) 18:4166

    Article  Google Scholar 

  65. Li JF, Zhang YJ, Ding SY et al (2017) Core-shell nanoparticle-enhanced raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  Google Scholar 

  66. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  67. Ejeian F, Etedali P, Mansouri-Tehrani HA et al (2018) Biosensors for wastewater monitoring: a review. Biosens Bioelectron 118:66–79

    Article  CAS  Google Scholar 

  68. Talari FF, Bozorg A, Faridbod F, Vossoughi M (2021) A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. J Environ Chem Eng 9:104878. https://doi.org/10.1016/j.jece.2020.104878

    Article  CAS  Google Scholar 

  69. Zhao S, Huang J, Lei J et al (2021) A portable and automatic dual-readout detector integrated with 3D-printed microfluidic nanosensors for rapid carbamate pesticides detection. Sens Actuators B Chem 346:130454. https://doi.org/10.1016/j.snb.2021.130454

    Article  CAS  Google Scholar 

  70. Numan A, Gill AAS, Rafique S et al (2021) Rationally engineered nanosensors: a novel strategy for the detection of heavy metal ions in the environment. J Hazard Mater 409:124493. https://doi.org/10.1016/j.jhazmat.2020.124493

    Article  CAS  Google Scholar 

  71. Choudhary M, Brink R, Nandi D et al (2017) Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom-mediated reduction of Rhodamine-B, a mechanistic approach. J Mater Sci 52:770–781. https://doi.org/10.1007/s10853-016-0372-z

    Article  CAS  Google Scholar 

  72. Kovalenko MV, Manna L, Cabot A et al (2015) Prospects of nanoscience with nanocrystals. ACS Nano 9:1012–1057. https://doi.org/10.1021/nn506223h

    Article  CAS  Google Scholar 

  73. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11:673–692

    Article  CAS  Google Scholar 

  74. Varanda LC, Souza CGS, Moraes DA et al (2019) Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review. An Acad Bras Cienc 91:e20181180. https://doi.org/10.1590/0001-3765201920181180

  75. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  76. Raza MA, Kanwal Z, Rauf A et al (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:74. https://doi.org/10.3390/nano6040074

    Article  CAS  Google Scholar 

  77. Guo K, Li H, Yu Z (2018) Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane. ACS Appl Mater Interfaces 10:517–525. https://doi.org/10.1021/acsami.7b14166

    Article  CAS  Google Scholar 

  78. Moaied M, Hong J (2019) Size-dependent critical temperature and anomalous optical dispersion in ferromagnetic CrI 3 nanotubes. Nanomaterials 9:153. https://doi.org/10.3390/nano9020153

    Article  CAS  Google Scholar 

  79. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116:10473–10512

    Article  CAS  Google Scholar 

  80. Zhang XF, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17:1603

    Article  Google Scholar 

  81. Talamini L, Violatto MB, Cai Q et al (2017) Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano 11:5519–5529. https://doi.org/10.1021/acsnano.7b00497

    Article  CAS  Google Scholar 

  82. Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  83. Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic (Amsterdam) 238:126–137. https://doi.org/10.1016/j.scienta.2018.03.060

    Article  Google Scholar 

  84. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  85. Al-Mamun MR, Hasan MR, Ahommed MS et al (2021) Nanofertilizers towards sustainable agriculture and environment. Environ Technol Innov 23:101658

    Article  CAS  Google Scholar 

  86. Zulfiqar F, Navarro M, Ashraf M et al (2019) Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci 289:110270

    Article  CAS  Google Scholar 

  87. Calabi-Floody M, Medina J, Rumpel C et al (2018) Smart fertilizers as a strategy for sustainable agriculture. Adv Agron 147:119–157

    Article  Google Scholar 

  88. Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264

    Article  CAS  Google Scholar 

  89. Rameshaiah GN, Pallavi J, Shabnam S (2015) Nano fertilizers and nano sensors – an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3:314–320

    Google Scholar 

  90. Kapinder, Dangi K, Verma AK (2020) Efficient & eco-friendly smart nano-pesticides: emerging prospects for agriculture. Mater Today Proc 45:3819–3824

    Article  Google Scholar 

  91. Natarelli CVL, Lopes CMS, Carneiro JSS et al (2021) Zinc slow-release systems for maize using biodegradable PBAT nanofibers obtained by solution blow spinning. J Mater Sci 56:4896–4908. https://doi.org/10.1007/s10853-020-05545-y

    Article  CAS  Google Scholar 

  92. Elmer W, De L-R, Pagano L et al (2018) Effect of metalloid and metal oxide nanoparticles on fusarium wilt of watermelon. Plant Dis 102:1394–1401. https://doi.org/10.1094/PDIS-10-17-1621-RE

    Article  CAS  Google Scholar 

  93. Vuong LD, Luan NDT, Ngoc DDH et al (2017) Green synthesis of silver nanoparticles from fresh leaf extract of centella asiatica and their applications. Int J Nanosci 16:1650018. https://doi.org/10.1142/S0219581X16500186

    Article  CAS  Google Scholar 

  94. Kale AP, Gawade SN (2016) Studies on nanoparticle induced nutrient use eficiency of fertilizer and crop productivity. Green Chem Technol Lett 2:88–92. https://doi.org/10.18510/gctl.2016.226

    Article  Google Scholar 

  95. Raliya R, Kumar Y, Tiwari KN et al (2020) Nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of uttar pradesh abstract nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian J Fertil 16(8):772–786

  96. Rossi L, Fedenia LN, Sharifan H et al (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166. https://doi.org/10.1016/j.plaphy.2018.12.005

    Article  CAS  Google Scholar 

  97. Shebl A, Hassan AA, Salama DM et al (2019) Green synthesis of nanofertilizers and their application as a foliar for cucurbita pepo l. J Nanomater 2019:3476347. https://doi.org/10.1155/2019/3476347

    Article  CAS  Google Scholar 

  98. Davarpanah S, Tehranifar A, Davarynejad G et al (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic (Amsterdam) 210:57–64. https://doi.org/10.1016/j.scienta.2016.07.003

    Article  CAS  Google Scholar 

  99. Tripathi DK, Singh S, Singh VP et al (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81. https://doi.org/10.1016/j.plaphy.2016.06.026

    Article  CAS  Google Scholar 

  100. Israel García-López J, Lira-Saldivar RH, Zavala-García F et al (2018) Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinense. Toxicol Environ Chem 100:560–572. https://doi.org/10.1080/02772248.2018.1550781

    Article  CAS  Google Scholar 

  101. Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289. https://doi.org/10.1016/j.ecoleng.2016.11.060

    Article  Google Scholar 

  102. Cui J, Liu T, Li F et al (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369. https://doi.org/10.1016/j.envpol.2017.05.014

    Article  CAS  Google Scholar 

  103. González-Moscoso M, Juárez-Maldonado A, Cadenas-Pliego G et al (2022) Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environ Sci Pollut Res 29:34147–34163. https://doi.org/10.1007/s11356-021-17665-2

    Article  CAS  Google Scholar 

  104. Khater MS (2015) Effect of titanium nanoparticles (TiO 2) on growth, yield and chemical constituents of coriander plants. Arab J Nucl Sci Appl 48:187–194

    Google Scholar 

  105. Zahra Z, Waseem N, Zahra R et al (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606. https://doi.org/10.1021/acs.jafc.7b01843

    Article  CAS  Google Scholar 

  106. Kadri O, Karmous I, Kharbech O et al (2021) Cu and CuO Nanoparticles Affected the Germination and the Growth of Barley ( Hordeum vulgare L.) Seedling. Bull Environ Contam Toxicol 108:585–593. https://doi.org/10.1007/s00128-021-03425-y

    Article  CAS  Google Scholar 

  107. Khattab S, El Sherif F, AlDayel M et al (2022) Silicon dioxide and silver nanoparticles elicit antimicrobial secondary metabolites while enhancing growth and multiplication of Lavandula officinalis in-vitro plantlets. Plant Cell Tissue Organ Cult 149:411–421. https://doi.org/10.1007/s11240-021-02224-x

    Article  CAS  Google Scholar 

  108. Sunil BH, Pushpalatha M, Basavaprasad VM, Huvanna TP (2018) Modified nano-clay formulation and their application. Int J Chem Stud 6:705–710

    Google Scholar 

  109. Mollamohammada S, Aly Hassan A, Dahab M, Kumar S (2021) A hybrid biological-adsorption approach for the treatment of contaminated groundwater using immobilized nanoclay-algae mixtures. Water (Switzerland) 13:633. https://doi.org/10.3390/w13050633

    Article  CAS  Google Scholar 

  110. Benício LPF, Constantino VRL, Pinto FG et al (2017) Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain Chem Eng 5:399–409. https://doi.org/10.1021/acssuschemeng.6b01784

    Article  CAS  Google Scholar 

  111. Bernardo MP, Guimarães GGF, Majaron VF, Ribeiro C (2018) Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain Chem Eng 6:5152–5161. https://doi.org/10.1021/acssuschemeng.7b04806

    Article  CAS  Google Scholar 

  112. Mukherjee A, Majumdar S, Servin AD et al (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  Google Scholar 

  113. Verma SK, Das AK, Gantait S et al (2019) Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499

    Article  CAS  Google Scholar 

  114. Tao X, Yu Y, Fortner JD et al (2015) Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. Chemosphere 122:162–167. https://doi.org/10.1016/j.chemosphere.2014.11.035

    Article  CAS  Google Scholar 

  115. González-García Y, López-Vargas ER, Cadenas-Pliego G et al (2019) Impact of carbon nanomaterials on the antioxidant system of Tomato seedlings. Int J Mol Sci 20:5858. https://doi.org/10.3390/ijms20235858

    Article  CAS  Google Scholar 

  116. Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164. https://doi.org/10.1007/s10853-018-2107-9

    Article  CAS  Google Scholar 

  117. Zhang M, Hu L, Wang H et al (2018) One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale 10:12734–12742. https://doi.org/10.1039/c8nr01644e

    Article  CAS  Google Scholar 

  118. Li H, Huang J, Lu F et al (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1:663–672. https://doi.org/10.1021/acsabm.8b00345

    Article  CAS  Google Scholar 

  119. Patel A, Tiwari S, Parihar P et al (2018) Carbon nanotubes as plant growth regulators: impacts on growth, reproductive system, and soil microbial community. In: Nanomaterials in plants, algae and micro-organisms: concepts and controversies, vol 2. pp 23–42. https://doi.org/10.1016/B978-0-12-811488-9.00002-0

  120. Oloumi H, Mousavi EA, Nejad RM (2018) Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ J Plant Physiol 65:260–268. https://doi.org/10.1134/S102144371802019X

    Article  CAS  Google Scholar 

  121. Gong X, Huang D, Liu Y et al (2019) Roles of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in: Boehmeria nivea (L.) Gaudich. Environ Sci Nano 6:851–862. https://doi.org/10.1039/c8en00723c

    Article  CAS  Google Scholar 

  122. Choudhary RC, Kumaraswamy RV, Kumari S et al (2019) Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int J Biol Macromol 127:126–135. https://doi.org/10.1016/j.ijbiomac.2018.12.274

    Article  CAS  Google Scholar 

  123. Fathi MH, Hanifi A, Mortazavi V (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202:536–542. https://doi.org/10.1016/j.jmatprotec.2007.10.004

    Article  CAS  Google Scholar 

  124. Rouahi M, Champion E, Gallet O et al (2006) Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: Influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf B Biointerfaces 47:10–19. https://doi.org/10.1016/j.colsurfb.2005.11.015

    Article  CAS  Google Scholar 

  125. Marchiol L, Filippi A, Adamiano A et al (2019) Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): preliminary evidence. Agronomy 9:161. https://doi.org/10.3390/agronomy9040161

    Article  CAS  Google Scholar 

  126. Raguraj S, Wijayathunga WMS, Gunaratne GP et al (2020) Urea–hydroxyapatite nanohybrid as an efficient nutrient source in Camellia sinensis (L.) Kuntze (tea). J Plant Nutr 43:2383–2394. https://doi.org/10.1080/01904167.2020.1771576

    Article  CAS  Google Scholar 

  127. Pradhan S, Durgam M, Mailapalli DR (2020) Urea loaded hydroxyapatite nanocarrier for efficient delivery of plant nutrients in rice. Arch Agron Soil Sci 67:371–382. https://doi.org/10.1080/03650340.2020.1732940

    Article  CAS  Google Scholar 

  128. Sciena CR, dos Santos MF, Moreira FKV et al (2019) Starch: pectin acidic sachets development for hydroxyapatite nanoparticles storage to improve phosphorus release. J Polym Environ 27:794–802. https://doi.org/10.1007/s10924-019-01391-5

    Article  CAS  Google Scholar 

  129. Taşkın MB, Şahin Ö, Taskin H et al (2018) Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (lectuca sativa L.) plant. J Plant Nutr 41:1148–1154. https://doi.org/10.1080/01904167.2018.1433836

    Article  CAS  Google Scholar 

  130. Organic NPK. https://www.prathista.com/shop/product.php?key=organic-npk&id=23. Accessed from 12 Nov 2020

  131. IcON product range. https://sonicessentials.com/icon-range/. Accessed fom 12 Nov 2020

  132. Uno fortune products. https://unofortune.en.taiwantrade.com/product/specification-of-nano-5-3-in-1-natural-mucilage-organic-fertilizer-1831722.html. Accessed from 12 Nov 2020

  133. Nano-Gro. http://agronano.com/#about. Accessed from 15 Nov 2020

  134. NovaLand. https://www.lgt.tw/novaland. Accessed from 15 Nov 2020

  135. Nubiotek Hyper. http://www.bioteksa.com/mobile/inner-page.php?id=20. Accessed from 15 Nov 2020

  136. Nasco Sudarshan. https://www.nascoworld.com/product_detail.php?pro_id=NzY=. Accessed from 15 Nov 2020

  137. Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33. https://doi.org/10.1016/S0300-483X(00)00452-2

    Article  CAS  Google Scholar 

  138. Mosquera-Sánchez LP, Arciniegas-Grijalba PA, Patiño-Portela MC et al (2020) Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatal Agric Biotechnol 25:101579. https://doi.org/10.1016/j.bcab.2020.101579

    Article  Google Scholar 

  139. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP et al (2019) ZnO-based nanofungicides: synthesis, characterization and their effect on the coffee fungi mycena citricolor and colletotrichum sp. Mater Sci Eng C 98:808–825. https://doi.org/10.1016/j.msec.2019.01.031

    Article  CAS  Google Scholar 

  140. Sathiyabama M, Manikandan A (2018) Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (eleusine coracana gaertn) plants against blast disease. J Agric Food Chem 66:1784–1790. https://doi.org/10.1021/acs.jafc.7b05921

    Article  CAS  Google Scholar 

  141. Muthukrishnan AM (2015) Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. J Nanomed Nanotechnol 06:1. https://doi.org/10.4172/2157-7439.1000251

    Article  CAS  Google Scholar 

  142. Osonga FJ, Akgul A, Yazgan I et al (2020) Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules 25:2682. https://doi.org/10.3390/molecules25112682

    Article  CAS  Google Scholar 

  143. Huang W, Wang C, Duan HM et al (2018) Synergistic antifungal effect of biosynthesized silver nanoparticles combined with fungicides. Int J Agric Biol 20:1225–1229. https://doi.org/10.17957/IJAB/15.0595

    Article  CAS  Google Scholar 

  144. MacHado TO, Beckers SJ, Fischer J et al (2020) Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants. Biomacromolecules 21:2755–2763. https://doi.org/10.1021/acs.biomac.0c00487

    Article  CAS  Google Scholar 

  145. Farahat G (2018) Biosynthesis of nano zinc and using of some nanoparticles in reducing of cercospora leaf spot disease of sugar beet in the field. Environ Biodivers Soil Secur 2:103–105. https://doi.org/10.21608/jenvbs.2018.5213.1035

    Article  Google Scholar 

  146. Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne ralstonia solanacearum. RSC Adv 9:3788–3799. https://doi.org/10.1039/c8ra09186b

    Article  CAS  Google Scholar 

  147. Muthukrishnan S, Murugan I, Selvaraj M (2019) Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in chickpea. Carbohydr Polym 212:169–177. https://doi.org/10.1016/j.carbpol.2019.02.037

    Article  CAS  Google Scholar 

  148. Chun SC, Chandrasekaran M (2019) Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int J Biol Macromol 125:948–954. https://doi.org/10.1016/j.ijbiomac.2018.12.167

    Article  CAS  Google Scholar 

  149. Choupanian M, Omar D (2018) Formulation and physicochemical characterization of neem oil nanoemulsions for control of Sitophilus oryzae (L., 1763) (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). Turkiye Entomoloji Derg 42:127–139. https://doi.org/10.16970/entoted.398541

    Article  Google Scholar 

  150. Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019) Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plant 25:313–326

    Article  CAS  Google Scholar 

  151. Chouhan D, Mandal P (2021) Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-a review. Int J Biol Macromol 166:1554–1569

    Article  CAS  Google Scholar 

  152. Sharma A, Sood K, Kaur J, Khatri M (2019) Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal Agric Biotechnol 18:101079. https://doi.org/10.1016/j.bcab.2019.101079

    Article  Google Scholar 

  153. Roseline TA, Murugan M, Sudhakar MP, Arunkumar K (2019) Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds. Environ Technol Innov 13:82–93. https://doi.org/10.1016/j.eti.2018.10.005

    Article  Google Scholar 

  154. Khoshraftar Z, Safekordi AA, Shamel A, Zaefizadeh M (2019) Synthesis of natural nanopesticides with the origin of eucalyptus globulus extract for pest control. Green Chem Lett Rev 12:286–298

    Article  CAS  Google Scholar 

  155. Pascoli M, Jacques MT, Agarrayua DA et al (2019) Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture: an ecotoxicological perspective. Sci Total Environ 677:57–67. https://doi.org/10.1016/j.scitotenv.2019.04.345

    Article  CAS  Google Scholar 

  156. KOCIDE 3000-O. http://www.kocide.com/kocide3000.html. Accessed from 15 Nov 2020

  157. Nanodetect. https://www.ttz-bremerhaven.de/en/research/food/902-nanodetect.html. Accessed from 15 Nov 2020

  158. Primo ® maxx. https://www.syngentaturf.sg/product/crop-protection/growth-regulator/primo-maxx. Accessed from 15 Nov 2020

  159. Filippo MB (2001) Banner maxx. In: M2Media360. https://www.syngentaturf.com.au/product/crop-protection/fungicide/banner-maxx. Accessed from 15 Nov 2020

  160. Patkar RS, Vinchurkar M, Ashwin M, Rao VR (2017) A novel PET-based piezoresistive MEMS sensor platform for agricultural applications. J Microelectromech Syst 26:746–748. https://doi.org/10.1109/JMEMS.2017.2710264

    Article  CAS  Google Scholar 

  161. Syngenta (2016) Karate Zeon. In: Syngenta. http://www.syngenta.com/global/corporate/en/products-and-innovation/product-brands/crop-protection/insecticides/Pages/karate-zeon.aspx. Accessed from 15 Nov 2020

  162. Arora K (2018) Advances in nano based biosensors for food and agriculture. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment. Environmental chemistry for a sustainable world. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-319-70166-0_1

  163. Cruiser MaXX. https://www.syngenta-us.com/seed-treatment/cruisermaxx. Accessed from 12 Nov 2020

  164. ripeSense®. http://www.ripesense.co.nz/ripesense_background.html. Accessed from 15 Nov 2020

  165. Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408. https://doi.org/10.1038/nmat3890

    Article  CAS  Google Scholar 

  166. Lau HY, Wu H, Wee EJH et al (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep 7:1–7. https://doi.org/10.1038/srep38896

    Article  CAS  Google Scholar 

  167. Sha R, Bhattacharyya TK (2020) MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim Acta 349:136370

    Article  CAS  Google Scholar 

  168. Mei H, Wu W, Yu B et al (2016) Nonenzymatic electrochemical sensor based on Fe@Pt core-shell nanoparticles for hydrogen peroxide, glucose and formaldehyde. Sens Actuator B Chem 223:68–75. https://doi.org/10.1016/j.snb.2015.09.044

    Article  CAS  Google Scholar 

  169. Asadian E, Ghalkhani M, Shahrokhian S (2019) Electrochemical sensing based on carbon nanoparticles: a review. Sens Actuator B Chem. 293:183–209

    Article  CAS  Google Scholar 

  170. Ng SM, Koneswaran M, Narayanaswamy R (2016) A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 6:21624–21661

    Article  CAS  Google Scholar 

  171. Singh R, Thakur P, Thakur A et al (2020) Colorimetric sensing approaches of surface-modified gold and silver nanoparticles for detection of residual pesticides: a review. Int J Environ Anal Chem 101:3006–3022. https://doi.org/10.1080/03067319.2020.1715382

    Article  CAS  Google Scholar 

  172. Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335. https://doi.org/10.1016/j.ecoleng.2015.05.027

    Article  Google Scholar 

  173. Cai C, Zhao M, Yu Z et al (2019) Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: a review. Sci Total Environ 662:205–217

    Article  CAS  Google Scholar 

  174. Gong X, Huang D, Liu Y et al (2018) Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol 38:455–468

    Article  CAS  Google Scholar 

  175. Naderi Peikam E, Jalali M (2019) Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metal-contaminated soil remediation (measuring and modeling). Int J Environ Sci Technol 16:7207–7220. https://doi.org/10.1007/s13762-018-2134-8

    Article  CAS  Google Scholar 

  176. Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impact 15:63–77

    Article  CAS  Google Scholar 

  177. Men C, Liu R, Xu F et al (2018) Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing China. Sci Total Environ 612:138–147. https://doi.org/10.1016/j.scitotenv.2017.08.123

    Article  CAS  Google Scholar 

  178. Fayiga AO, Saha UK (2016) Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils. Geoderma 284:132–143

    Article  CAS  Google Scholar 

  179. Hananingtyas I, Nuryanty CD, Karlinasari L et al (2022) The effects of heavy metal exposure in agriculture soil on chlorophyll content of agriculture crops: a meta-analysis approach. In: IOP Conference Series: Earth and Environmental Science 951: 012044. Doi: https://doi.org/10.1088/1755-1315/951/1/012044

  180. Gil-Díaz M, Pinilla P, Alonso J, Lobo MC (2017) Viability of a nanoremediation process in single or multi-metal(loid) contaminated soils. J Hazard Mater 321:812–819. https://doi.org/10.1016/j.jhazmat.2016.09.071

    Article  CAS  Google Scholar 

  181. Wang T, Liu Y, Wang J et al (2019) In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J Environ Manag 231:679–686. https://doi.org/10.1016/j.jenvman.2018.10.085

    Article  CAS  Google Scholar 

  182. Su H, Fang Z, Tsang PE et al (2016) Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater 318:533–540. https://doi.org/10.1016/j.jhazmat.2016.07.039

    Article  CAS  Google Scholar 

  183. Kodavanti PRS, Royland JE, Sambasiva Rao KRS (2014) Toxicology of persistent organic pollutants. In: Reference module in biomedical sciences. https://doi.org/10.1016/B978-0-12-801238-3.00211-7

  184. Saljooqi A, Shamspur T, Mostafavi A (2021) Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: investigation of pesticide degradation reaction in water treatment. Environ Sci Pollut Res 28:9146–9156. https://doi.org/10.1007/s11356-020-11122-2

    Article  CAS  Google Scholar 

  185. Varma KS, Tayade RJ, Shah KJ et al (2020) Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: a review. Water Energy Nexus 3:46–61. https://doi.org/10.1016/j.wen.2020.03.008

    Article  Google Scholar 

  186. El-Temsah YS, Sevcu A, Bobcikova K et al (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228. https://doi.org/10.1016/j.chemosphere.2015.10.122

    Article  CAS  Google Scholar 

  187. Liu G, Li L, Huang X et al (2018) Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J Mater Sci 53:10772–10783. https://doi.org/10.1007/s10853-018-2352-y

    Article  CAS  Google Scholar 

  188. Bakshi M, Abhilash PC (2020) Nanotechnology for soil remediation: revitalizing the tarnished resource. In: Nano-materials as photocatalysts for degradation of environmental pollutants: challenges and possibilities. pp 345–370. https://doi.org/10.1016/B978-0-12-818598-8.00017-1

  189. Peralta-Videa JR, Lopez ML, Narayan M et al (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  Google Scholar 

  190. Sorcia-Morales M, Gómez-Merino FC, Sánchez-Segura L et al (2021) Multi-walled carbon nanotubes improved development during in vitro multiplication of sugarcane (saccharum spp.) in a semi-automated bioreactor. Plant 10:2015. https://doi.org/10.3390/plants10102015

    Article  CAS  Google Scholar 

  191. Patel DK, Kim HB, Dutta SD et al (2020) Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materals (Basel) 13:1679

    Article  CAS  Google Scholar 

  192. Gopalakrishnan Nair PM (2018) Toxicological impact of carbon nanomaterials on plants. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment. Environmental chemistry for a sustainable world. Springer, Cham, pp 163–183. https://doi.org/10.1007/978-3-319-70166-0_5

  193. Chang X, Song Z, Xu Y, Gao M (2020) Effects of carbon nanotubes on growth of wheat seedlings and Cd uptake. Chemosphere 240:124931. https://doi.org/10.1016/j.chemosphere.2019.124931

    Article  CAS  Google Scholar 

  194. Yang Z, Xiao Y, Jiao T et al (2020) Effects of copper oxide nanoparticles on the growth of rice (Oryza sativa L.) seedlings and the relevant physiological responses. Int J Environ Res Public Health 17:1260. https://doi.org/10.3390/ijerph17041260

    Article  CAS  Google Scholar 

  195. Pelegrino MT, Kohatsu MY, Seabra AB et al (2020) Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environ Monit Assess 192:1–14. https://doi.org/10.1007/s10661-020-8188-3

    Article  CAS  Google Scholar 

  196. Rajput V, Minkina T, Fedorenko A et al (2018) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ 645:1103–1113. https://doi.org/10.1016/j.scitotenv.2018.07.211

    Article  CAS  Google Scholar 

  197. Wang Y, Jiang F, Ma C et al (2019) Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum)in a life cycle study. J Environ Manag 241:319–327. https://doi.org/10.1016/j.jenvman.2019.04.041

    Article  CAS  Google Scholar 

  198. Singh D, Kumar A (2018) Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology 27:23–31. https://doi.org/10.1007/s10646-017-1867-3

    Article  CAS  Google Scholar 

  199. Ahmed B, Khan MS, Musarrat J (2018) Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): a study on growth dynamics and plant cell death. Environ Pollut 240:802–816. https://doi.org/10.1016/j.envpol.2018.05.015

    Article  CAS  Google Scholar 

  200. Simonin M, Colman BP, Anderson SM et al (2018) Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecol Appl 28:1435–1449. https://doi.org/10.1002/eap.1742

    Article  Google Scholar 

  201. Carley LN, Panchagavi R, Song X et al (2020) Long-term effects of copper nanopesticides on soil and sediment community diversity in two outdoor mesocosm experiments. Environ Sci Technol 54:8878–8889. https://doi.org/10.1021/acs.est.0c00510

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.M.S. would like to thank The Director of ICT-IOC Bhubaneswar, for constant support and guidance. D.M. would like to thank University of Petroleum and Energy Studies for all the support and guidance. S.S. wishes to thank Prof. Suddhasatwa Basu, Director, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, India, for in-house financial support (Grant number: CSIR-IMMT-OLP‐112) and requisite permissions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipak Maity or Sumit Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.M., Tiwari, A., Maity, D. et al. Recent progress of nanomaterials in sustainable agricultural applications. J Mater Sci 57, 10836–10862 (2022). https://doi.org/10.1007/s10853-022-07259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07259-9

Navigation