Skip to main content

Advertisement

Log in

Starch:Pectin Acidic Sachets Development for Hydroxyapatite Nanoparticles Storage to Improve Phosphorus Release

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The importance of fertilizers in boosting crop production has motivated the development of novel high-performance systems capable of improving the phosphorus release in the soil. For instance, methods capable of increasing the surface area of fertilizer particles and promoting the solubilization of low-solubility compounds, including phosphates, are highly pursued. This study was aimed at synthesizing hydroxyapatite nanoparticles and investigating their solubility in relation to crystallinity, size, and morphology for phosphorous fertilizer applications. To improve the phosphate ions release, the hydroxyapatite nanoparticles were storage in biodegradable sachets composed of thermoplastic starch/pectin blends with different polymer ratios. The results showed that the smallest and less crystalline hydroxyapatite nanoparticles presented the highest solubility. After storage in polymeric thermoplastic starch:pectin sachets, solubility for all samples was greatly improved, enhancing the phosphorus release due to pH decrease, independent on the nanoparticle size, shape, and crystallinity. The results highlight that the use of acidic sachets is a valuable approach for enhancing phosphorus and other macronutrients release from fertilizers with basic surface properties, aiming at increasing agricultural crop productivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tang J, Hong J, Liu Y (2018) J Polym Environ 26:1930

    Article  CAS  Google Scholar 

  2. Jia X, Ma ZY, Zhang GX, Hu JM, Liu ZY, Wang HY, Zhou F (2013) J Agric Food Chem 61(12):2919

    Article  CAS  PubMed  Google Scholar 

  3. Treinyte J, Grazuleviciene V, Paleckiene R (2018) J Polym Environ 26:543

    Article  CAS  Google Scholar 

  4. Merisko-Liversidge EM, Liversidge GG (2008) Toxicol Pathol 36:43

    Article  CAS  PubMed  Google Scholar 

  5. Haygarth PM, Jarvis SC (1999) Adv Agron 66:195

    Article  CAS  Google Scholar 

  6. Haygarth PM, Heathwaite AL, Jarvis SC, Harrod TR (2000) Adv Agron 69:153

    Article  Google Scholar 

  7. Petkova V, Yaneva V (2010) J Therm Anal Calorim 99:179

    Article  CAS  Google Scholar 

  8. Pérez-López R, Macías F, Cánovas CR, Sarmiento AM, Pérez-Moreno SM (2016) Sci Total Environ 553:42

    Article  CAS  PubMed  Google Scholar 

  9. Hart MR, Quin BF, Nguyen ML (2004) J Environ Qual 33:1954

  10. Mihajlovic M, Perisic N, Pezo L, Stojanovic M, Milojkovic J, Lopicic Z, Petrovic M (2014) J Agric Food Chem 62:9965

    Article  CAS  PubMed  Google Scholar 

  11. Rajan SSS, Watkinson JH, Sinclair AG (1996) Adv Agronl 57:77

    Article  CAS  Google Scholar 

  12. Welch SA, Taunton AE, Banfield JF (2002) Geomicrobiol J 19(3):343

    Article  CAS  Google Scholar 

  13. Kwon GS (2008) Nanotechnology in drug delivery. Springer, New York

    Google Scholar 

  14. Wei X, Yates MZ (2012) Chem Mat 24:1738

    Article  CAS  Google Scholar 

  15. Montalvo D, McLaughlin MJ, Degryse F (2015) Soil Sci Soc Am J 79:551

    Article  CAS  Google Scholar 

  16. Giroto AS, Fidelis SC, Ribeiro C (2015) Rsc Adv 5:104179

    Article  CAS  Google Scholar 

  17. Liu RQ, Lal R (2014) Sci Rep 4:6

    Google Scholar 

  18. Liu J, Ye X, Wang H, Zhu M,  Wang B, Yan H (2003) Ceram Int 29(6):629

    Article  CAS  Google Scholar 

  19. de Oliveira MAR, Paris EC, Ribeiro C (2013) Quim Nova 36:790

    Article  Google Scholar 

  20. Bala N, Dey A, Das S, Basu R, Nandy P Iran J Plant Physiol 4(3)

  21. Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuk S (2005) J Basic Microbiol 45(3):182

    Article  PubMed  Google Scholar 

  22. Yadav H, Fatima R, Sharma A, Mathur S (2017) Appl Soil Ecol 113:80

    Article  Google Scholar 

  23. Narsian V, Patel HH (2000) Soil Biol Biochem 32:559

    Article  CAS  Google Scholar 

  24. Goenadi DH, Siswanto Y, Sugiarto Y (2000) Soil Sci Soc Am J 64:927

    CAS  Google Scholar 

  25. Chien SH, Sale PWG, Friesen DK (1990) Fertil Res 24:149

    Article  CAS  Google Scholar 

  26. Chien SH, Prochnow LI, Cantarella H (2009) Adv Agron 102:267

    Article  CAS  Google Scholar 

  27. Tyliszczak B, Polaczek J, Pielichowski K (2009) Pol J Environ Stud 18:475

    CAS  Google Scholar 

  28. Jin SP, Yue GR, Feng L, Han YQ, Yu XH, Zhang ZH (2011) J Agric Food Chem 59:322

    Article  CAS  PubMed  Google Scholar 

  29. Xiao XM, Yu L, Xie FW, Bao XY, Liu HS, Ji ZL, Chen L (2017) Chem Eng J 309:607

    Article  CAS  Google Scholar 

  30. Jin SP, Wang YS, He JF, Yang Y, Yu XH, Yue GR (2013) J Appl Polym Sci 128:407

    Article  CAS  Google Scholar 

  31. Qiao DL, Liu HS, Yu L, Bao XY, Simon GP, Petinakis E, Chen L (2016) Carbohydr Polyms 147:146

    Article  CAS  Google Scholar 

  32. Sharma J, Kaith B, Bhatti M (2018) J Polym Environ 26:518

    Article  CAS  Google Scholar 

  33. León O, Muñoz-Bonilla A, Soto D, Ramirez J, Marquez Y, Colina M, Fernández-García M (2018) J Polym Environ 26:728

    Article  CAS  Google Scholar 

  34. Chen S, Yang M, Ba C, Yu S, Jiang Y, Zou H, Zhang Y (2018) Sci Total Environ 615:431

    Article  CAS  PubMed  Google Scholar 

  35. Moreira FKV, Marconcini JM, Mattoso LHC (2012) Polym Bull 69:561

    Article  CAS  Google Scholar 

  36. Murphy J, Riley JP (1962) Anal Chim Acta 27:31

    Article  CAS  Google Scholar 

  37. Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M (2007) J Alloy Compd 430:330

    Article  CAS  Google Scholar 

  38. André RS, Paris EC, Gurgel  MFC, Rosa ILV, Paiva-Santos CO, Li MS, Varela JA, Longo E (2012) J Alloys Compd 531:50

    Article  CAS  Google Scholar 

  39. Kumar AC, GS (2010) Carbohydr Polym 82:454

    Article  CAS  Google Scholar 

  40. Corradini EL, Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2005) Polímeros 15:268

    Article  CAS  Google Scholar 

  41. McLaughlin MM, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) Plant Soil 349:69

    Article  CAS  Google Scholar 

  42. Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J (2002) Biomaterials 23:751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support given by CNPq, SISNANO/MCTI, CAPES, and AgroNano research network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine C. Paris.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciena, C.R., dos Santos, M.F., Moreira, F.K.V. et al. Starch:Pectin Acidic Sachets Development for Hydroxyapatite Nanoparticles Storage to Improve Phosphorus Release. J Polym Environ 27, 794–802 (2019). https://doi.org/10.1007/s10924-019-01391-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01391-5

Keywords

Navigation