Skip to main content
Log in

Silver nanoparticles: partial oxidation and antibacterial activities

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The physical and chemical properties of silver nanoparticles that are responsible for their antimicrobial activities have been studied with spherical silver nanoparticles (average diameter approximately 9 nm) synthesized by the borohydride reduction of Ag+ ions, in relation to their sensitivity to oxidation, activities towards silver-resistant bacteria, size-dependent activities, and dispersal in electrolytic solutions. Partially (surface) oxidized silver nanoparticles have antibacterial activities, but zero-valent nanoparticles do not. The levels of chemisorbed Ag+ that form on the particle’s surface, as revealed by changes in the surface plasmon resonance absorption during oxidation and reduction, correlate well with the observed antibacterial activities. Silver nanoparticles, like Ag+ in the form of AgNO3 solution, are tolerated by the bacteria strains resistant to Ag+. The antibacterial activities of silver nanoparticles are related to their size, with the smaller particles having higher activities on the basis of equivalent silver mass content. The silver nanoparticles aggregate in media with a high electrolyte content, resulting in a loss of antibacterial activities. However, complexation with albumin can stabilize the silver nanoparticles against aggregation, leading to a retention of the antibacterial activities. Taken together, the results show that the antibacterial activities of silver nanoparticles are dependent on chemisorbed Ag+, which is readily formed owing to extreme sensitivity to oxygen. The antibacterial activities of silver nanoparticles are dependent on optimally displayed oxidized surfaces, which are present in well-dispersed suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The term “oxidized nano-Ag” used throughout the text denotes the partially oxidized form of nano-Ag which possesses chemisorbed Ag+ ions.

Abbreviations

BSA:

Bovine serum albumin

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

MIC:

Minimum inhibitory concentration

Nano-Ag:

Silver nanoparticles

SPR:

Surface plasmon resonance

References

  1. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23:741–745

    Article  PubMed  CAS  Google Scholar 

  2. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA (2006) Science 312:1027–1030

    Article  PubMed  CAS  Google Scholar 

  3. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901–1903

    Article  PubMed  CAS  Google Scholar 

  4. Murphy CJ, Jana NR (2002) Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  5. Henglein A (1998) Chem Mater 10:444–450

    Article  CAS  Google Scholar 

  6. Henglein A (1993) J Phy Chem 97:5457–5471

    Article  CAS  Google Scholar 

  7. Olson ME, Wright JB, Lam K, Burrell RE (2000) Eur J Surg 166:486–489

    Article  PubMed  CAS  Google Scholar 

  8. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Chem Commun 3018–3019

  9. Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) Biomaterials 25:4383–4391

    Article  PubMed  CAS  Google Scholar 

  10. Balogh L, Swanson DR, Tomalia D, Hagnauer GL, McManus AT (2001) Nano Lett 1:18–21

    Article  CAS  Google Scholar 

  11. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ (2005) J Am Chem Soc 127:2285–2291

    Article  PubMed  CAS  Google Scholar 

  12. Lee D, Cohen RE, Rubner MF (2005) Langmuir 21:9651–9659

    Article  PubMed  CAS  Google Scholar 

  13. Podsiadlo P, Paternel S, Rouillard JM, Zhang Z, Lee J, Lee JW, Gulari E, Kotov NA (2005) Langmuir 21:11915–11921

    Article  PubMed  CAS  Google Scholar 

  14. Baker C, Pradhan A, Pakstis L, Pochan D J, Shah SI (2005) J Nanosci Nanotechnol 5:244–249

    Article  PubMed  CAS  Google Scholar 

  15. Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Chem Commun 5059–5061

  16. Russell AD, Hugo WB (1994) Prog Med Chem 31:351–70

    Article  PubMed  CAS  Google Scholar 

  17. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Antimicrob Agents Chemother 46:2668–70

    Article  PubMed  CAS  Google Scholar 

  18. Bard AJ, Holt KB (2005) Biochemistry 44:13214–13223

    Article  PubMed  CAS  Google Scholar 

  19. Silver S (2003) FEMS Microbiol Rev 27:341–153

    Article  PubMed  CAS  Google Scholar 

  20. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Proc Natl Acad Sci USA 96:13611–13614

    Article  PubMed  CAS  Google Scholar 

  21. Gupta A, Matsui K, Lo JF, Silver S (1999) Nat Med 5:183–188

    Article  PubMed  CAS  Google Scholar 

  22. Li XZ, Nikaido H, Williams KE (1997) J Bacteriol 179:6127–6132

    PubMed  CAS  Google Scholar 

  23. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    Article  PubMed  CAS  Google Scholar 

  24. Morones JR, Elechiguerra JL, Cammacho A, Holt K, Kouri JB, Ramirez JT, Yacaman J (2005) Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  25. Xu XH, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Biochemistry 43:10400–10413

    Article  PubMed  CAS  Google Scholar 

  26. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) J Proteome Res 5:916–924

    Article  PubMed  CAS  Google Scholar 

  27. Gibbard J (1937) Am J Public Health 27:112–119

    Article  CAS  Google Scholar 

  28. Djokic SS, Burrell RE (1998) J Electrochem Soc 145:1426–143

    Article  CAS  Google Scholar 

  29. Fan FR, Bard AJ (2002) J Phys Chem B 106:279–287

    Article  CAS  Google Scholar 

  30. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) J Phys Chem B 110:16248–16253

    Article  PubMed  CAS  Google Scholar 

  31. Doty RD, Tshikhudo TR, Brust M, Fernig DG (2005) Chem Mater 17:4630–4635

    Article  CAS  Google Scholar 

  32. Moskovits M, Vlckova B (2005) J Phys Chem B 109:14755–14758

    Article  PubMed  CAS  Google Scholar 

  33. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Chem Med Chem 2:129–136

    Google Scholar 

Download references

Acknowledgements

We thank Simon Silver, Xian-Zhi Li, and Keith Poole for providing the bacterial strains, and Rory Watt for his help in editing the manuscript. This work was supported by the Area of Excellence Scheme (AoE/P-10/01) established under the University Grants Committee of the Hong Kong Special Administrative Region, People’s Republic of China, the Strategic Research Themes on Bionanotechnology, and the Research Support Programs (to C.M.C., J.F.C., and C.N.L) and the University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jen-Fu Chiu or Chi-Ming Che.

Additional information

Chun-Nam Lok and Chi-Ming Ho equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_208_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lok, CN., Ho, CM., Chen, R. et al. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12, 527–534 (2007). https://doi.org/10.1007/s00775-007-0208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0208-z

Keywords

Navigation