Skip to main content

Advertisement

Log in

Chemical vapor deposition and its application in surface modification of nanoparticles

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanomaterial has diverse applications in electronics, catalysis, energy, materials chemistry and even biology due to the special properties endowed by their high specific surface ratio. However, nanoparticles can easily get agglomerated and lose their original properties, which has become one critical issue and limits its application in nanotechnology. Various surface modification methods were used to reduce its surface energy and prevent the agglomeration. While physical methods use surfactants to prevent the latter, chemical methods are more favorable, since the strong covalent bonds are more durable under wide range of conditions. Among these chemical modifications, chemical vapor deposition is extensively studied. Here we introduced nanomaterial’s characterization and reviewed different categories of chemical vapor deposition methods that have been used for nonmaterial’s surface modification. We showed that photo-induced chemical vapor deposition (PICVD) is an attractive strategy that could be carried out under normal temperature and pressure conditions; it might be the best potential candidate to be used widely in large-scale processes. Finally, we discussed the factors affecting functionalization process of PICVD and the research progress of its application in surface modification of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alharthi B, Dou W et al (2019) Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications. Appl Surf Sci 481:246–254

    Article  CAS  Google Scholar 

  • Al-Hetlani E, Amin MO et al (2017) Detachable photocatalysts of anatase TiO2 nanoparticles: annulling surface charge for immediate photocatalyst separation. Appl Surf Sci 411:355–362

    Article  CAS  Google Scholar 

  • Aliofkhazraei M (2014) Fabrication of micro/nanostructured coatings by CVD techniques. Compr Mater Process 7:85–117

    Article  Google Scholar 

  • Anthony C, Jones MLH (2009) Overview of chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, London, pp 1–36

    Google Scholar 

  • Aseyev VO, Tenhu H (2006) Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. In: conformation-dependent design of sequences in copolymers II. Springer, Berlin, pp 1–85

    Book  Google Scholar 

  • Asmatulu R, Khan WS (2013) Nanotechnology safety in the energy industry. In: nanotechnology safety. Elsevier, Amsterdam, pp 127–139

    Book  Google Scholar 

  • Bagga K, Brougham DF et al (2015) Magnetic and noble metal nanocomposites for separation and optical detection of biological species. Phys Chem Chem Phys 17:27968–27980

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  PubMed  Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059

    Article  CAS  PubMed  Google Scholar 

  • Baxamusa SH, Montero L et al (2008) Thermal excitationwasaccomplishedby resistivelyheating 28 AWG Nichrome wire (80% Ni/20% Cr) strung on a filament holder. Biomacromol 9:2857–2862

    Article  CAS  Google Scholar 

  • Bérard A, Patience GS et al (2014) Photo initiated chemical vapour deposition to increase polymer hydrophobicity. Sci Rep 6:31574

    Article  CAS  Google Scholar 

  • Bérard A, Patience GS et al (2016) Photo initiated chemical vapour deposition to increase polymer hydrophobicity. Sci Rep 6:31574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boies AM (2011) Gas-phase synthesis of gold- and silica-coated nanoparticles, United States-Minnesota

  • Boies AM, Roberts JT (2009) SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition. Nanotechnology 20(29):295604

    Article  PubMed  CAS  Google Scholar 

  • Bolshakov AP, Ralchenko VG et al (2019) Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities. Diamond Relat Mater 97:107466

    Article  CAS  Google Scholar 

  • Bouchard D, Zhang W et al (2012) Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environ Sci Technol 46(8):4458–4465

    Article  CAS  PubMed  Google Scholar 

  • Boyda IW, Zhang JY (2001) Photo-induced growth of dielectrics with excimer lamps. Solid-State Electron 45(8):1413–1431

    Article  Google Scholar 

  • Buzea C, Pacheco H (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Article  Google Scholar 

  • Chan K, Gleason KK (2005) Photoinitiated chemical vapor deposition of polymeric thin films using a volatile photoinitiator. Langmuir 21(25):11773–11779

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Henderson WM et al (2015) Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response. Environ Sci Technol 49(11):6645–6653

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zou Y et al (2019a) Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis. Mater Today Energy 12:250–268

    Article  Google Scholar 

  • Chen Z, Wu C et al (2019b) Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin Chem Lett 29(11):1601–1608

    Article  CAS  Google Scholar 

  • Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170

    Article  CAS  Google Scholar 

  • Christian P, Bromfield M (2010) Preparation of small silver, gold and copper nanoparticles which disperse in both polar and non-polar solvents. J Mater Chem 20(6):1135–1142

    Article  CAS  Google Scholar 

  • Dassios KG, Alafogianni P et al (2015) Optimization of sonication parameters for homogeneous surfactant-assisted dispersion of multiwalled carbon nanotubes in aqueous solutions. J Phys Chem C 119(13):7506–7516

    Article  CAS  Google Scholar 

  • Dion CA, Tavares JR (2013a) Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a practical review). Powder Technol 2013:484–491

    Article  CAS  Google Scholar 

  • Dion CA, Tavares JR (2013b) Photo-initiated chemical vapour deposition as a scalable particle functionalization technology (a practical review). Powder Technol 239:484–491

    Article  CAS  Google Scholar 

  • Dion CAD, Raphael W et al (2014) Photo-initiated chemical vapor deposition of thin films using syngas for the functionalization of surfaces at room temperature and near-atmospheric pressure. Surf Coat Technol 244:98–108

    Article  CAS  Google Scholar 

  • Egerton TA, Purnama H (2014) Does hydrogen peroxide really accelerate TiO2 UV-C photocatalyzed decolouration of azo-dyes such as reactive Orange 16? Dyes Pigm 101:280–285

    Article  CAS  Google Scholar 

  • Elsner C, Lenk M et al (2006) Windowless argon excimer source for surface modification. Appl Surf Sci 252:3616–13524

    Article  CAS  Google Scholar 

  • Evans RC, Douglas P et al (2014) Foundations of photochemistry: a background on the interaction between light and molecules. In: applied photochemistry. Springer, Netherlands

    Google Scholar 

  • Farhanian D, Dion CAD et al (2014) Combined extraction and functionalization of low-cost nanoparticles from municipal solid waste fly ash through PICVD. J Environ Chem Eng 2:2242–2251

    Article  CAS  Google Scholar 

  • Farhanian D, Crescenzo GD et al (2017) Kinetics, chemistry, and morphology of syngas photoinitiated chemical vapor deposition. Langmuir 33:1780–1791

    Article  CAS  PubMed  Google Scholar 

  • Farhanian D, Crescenzo GD et al (2018) Large-scale encapsulation of magnetic iron oxide nanoparticles via syngas photo-initiated chemical vapor deposition. Sci Rep 8:12223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Favela-Camacho SE, Samaniego-Benítez EJ et al (2019) How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloids Surf A 574:29–35

    Article  CAS  Google Scholar 

  • Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Prentice-Hall, Boston

    Google Scholar 

  • Fujiyama H, Yamaguchi T (2001) Large-area uniform dust-free plasma CVD. Thin Solid Films 390:76–82

    Article  CAS  Google Scholar 

  • Gassner M, Schalk N et al (2019) Thermal crack network on CVD TiCN/α-Al2O3 coated cemented carbide cutting tools. Int J Refract Metal Hard Mater 81:1–6

    Article  CAS  Google Scholar 

  • Girard-Lauriault PL, Illgen R et al (2012) Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions. Appl Surf Sci 258:8448–8454

    Article  CAS  Google Scholar 

  • Gong P, Xie J et al (2019) Novel heterogeneous denitrification catalyst over a wide temperature range: synergy between CeO2, ZrO2 and TiO2. Chem Eng J 356:598–608

    Article  CAS  Google Scholar 

  • Gonzalez-Pech NI, Grassian VH (2018) Surface chemical functionalities of environmental nanomaterials. Encyclopedia of Interfacial Chemistry

  • Goudeli E (2019) Nanoparticle growth, coalescence, and phase change in the gas-phase by molecular dynamics. Curr Opin Chem Eng 23:155–163

    Article  Google Scholar 

  • Goyal K, Mahalingam R et al (2001) Explosion model applied to an intense pulsed plasma source for thin film deposition. IEEE Trans Plasma Sci 29:42–50

    Article  CAS  Google Scholar 

  • Gräfe C, Weidner A et al (2016) Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle–cell interaction. Int J Biochem Cell Biol 75:196–202

    Article  PubMed  CAS  Google Scholar 

  • Hosseininasab S, Faucheux N et al (2017) Full range of wettability through surface modification of single-wall carbon nanotubes by photo-initiated chemical vapour deposition. Chem Eng J 325:101–113

    Article  CAS  Google Scholar 

  • Hung PT, Hien VX et al (2019) Photo induced NO2 sensing properties of bismuth triiodide (BiI3) nanoplates at room temperature. Scripta Mater 172:17–22

    Article  CAS  Google Scholar 

  • Iskandar F (2009) Nanoparticle processing for optical applications: a review. Adv Powder Technol 20(4):283–292

    Article  CAS  Google Scholar 

  • Javanbakht T, Laurent S et al (2015) Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition. J Nanopart Res 17:462

    Article  CAS  Google Scholar 

  • Javanbakht T, Raphael W et al (2016) Physicochemical properties of cellulose nanocrystals treated by photo-initiated chemical vapour deposition (PICVD). Can J Chem Eng 94:1135–1139

    Article  CAS  Google Scholar 

  • Johny J, Guzman SS et al (2019) SnS2 nanoparticles by liquid phase laser ablation: effects of laser fluence, temperature and post irradiation on morphology and hydrogen evolution reaction. Appl Surf Sci 470:276–288

    Article  CAS  Google Scholar 

  • Joshi M, Chatterjee U (2016) Polymer nanocomposite: An advanced material for aerospace applications. Woodhead Publishing, Cambridge, Adv Compos Mater Aerosp Eng, pp 241–264

    Google Scholar 

  • Karfa P, De S et al (2019) Functionalization of carbon nanostructures. In: comprehensive nanoscience and nanotechnology. Academic Press, Cambridge, pp 123–144

    Book  Google Scholar 

  • Kasparek E, Tavares JR et al (2016) Sulfur-rich organic films deposited by plasma- and vacuum-ultraviolet (VUV) photo- polymerization. Plasma Process Polym 13:888–899

    Article  CAS  Google Scholar 

  • Kato R, Hasegawa M (2019) Fast synthesis of thin graphite film with high-performance thermal and electrical properties grown by plasma CVD using polycrystalline nickel foil at low temperature. Carbon 141:768–773

    Article  CAS  Google Scholar 

  • Kessler F, Muñoz PAR et al (2018) Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Appl Surf Sci 440:55–60

    Article  CAS  Google Scholar 

  • Khalil HPSA, Dungani R et al (2015) Mechanical properties of oil palm biocomposites enhanced with micro to nanobiofillers. In: biocomposites. Woodhead Publishing, Cambridge, pp 401–435

    Google Scholar 

  • Khan WS, Asmatulu R (2013) Nanotechnology emerging trends, markets, and concerns. In: nanotechnology safety. Elsevier, Amsterdam, pp 1–16

    Google Scholar 

  • Kim KS, Kim KH et al (2017) Silicon nitride deposition for flexible organic electronic devices by VHF (162 MHz)-PECVD using a multi-tile push-pull plasma source. Sci Rep 7:13585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kogelschatz U, Esrom H (2000) High-intensity sources of incoherent UV and VUV excimer radiation for low-temperature materials processing. Appl Surf Sci 168(1–4):29–36

    Article  CAS  Google Scholar 

  • Kowalski W (2010) UVGI for air and surface disinfection. Ultraviolet Germicidal Irradiation Handbook Springer, Berlin, p 17

    Google Scholar 

  • Labonté V, Marion A et al (2016) Gas-phase surface engineering of polystyrene beads used to challenge automated particle inspection systems. Ind Eng Chem Res 55:7362–7372

    Article  CAS  Google Scholar 

  • Laborda F, Bolea E (2018) Nanomaterials engineered nanomaterials. Encyclopedia of Analytical Science (Third Edition), pp. 108-116

  • Lari HN, Farhanian D et al (2017) Shedding light on iron pentacarbonyl photochemistry through a CVD case study. Catal Commun 100:19–23

    Article  CAS  Google Scholar 

  • Lau KKS, Gleason KK (2007) Particle functionalization and encapsulation by initiated chemical vapor deposition (iCVD). Surf Coat Technol 201(22–23):9189–9194

    Article  CAS  Google Scholar 

  • Manawi YM, Samara A et al (2018) A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 11:822

    Article  PubMed Central  CAS  Google Scholar 

  • Mathew J, Joy J et al (2018) Potential applications of nanotechnology in transportation: a review. J King Saud Uni-Sci (In press)

  • Mattox DM (2018) Plasmas and plasma enhanced CVD. The Foundations of Vacuum Coating Technology (Second Edition), pp. 61-86

    Chapter  Google Scholar 

  • Miyano J, Yokotani A (2004) Characteristics of thin film deposition by photo-CVD using a Xe2 excimer lamp. Electr Eng Jpn 147(4):43–50

    Article  Google Scholar 

  • Niu W, Liu J et al. (2019). Synthetic engineering of graphene nanoribbons with excellent liquid-phase processability. Trends Chem (In press)

  • Okabe H (1978) Photochemistry of small molecules. Wiley, New York

    Google Scholar 

  • Ozaydin-Ince G, Gleason KK (2009) Transition between kinetic and mass transfer regimes in the initiated chemical vapor deposition from ethylene glycol diacrylate. J Vacuum Sci Technol A27:1135–1143

    Article  CAS  Google Scholar 

  • Pelletier J, Arnala Y et al (2001) New trends in DECR plasma technology: applications to novel duplex treatments and process combinations with extreme plasma specifications. Surf Coat Technol 139:222–232

    Article  CAS  Google Scholar 

  • Post P, Bierwirth M et al (2018) Mechanical stability measurements of surface modified nanoparticle agglomerates. J Aerosol Sci 126:33–46

    Article  CAS  Google Scholar 

  • Qi Y, Xia T et al (2016) Colloidal stability of reduced graphene oxide materials prepared using different reducing agents. Environ Sci Nano 3(5):1062–1071

    Article  CAS  Google Scholar 

  • Radziuk D, Skirtach A (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly (ethylene glycol). Macromol Rapid Commun 28(7):848–855

    Article  CAS  Google Scholar 

  • Raja M (2014) Surface modification of carbon nanotubes with combined UV and ozone treatments. Fuller Nanotub Carbon Nanostruct 23:11–16

    Article  CAS  Google Scholar 

  • Ramirez L, Gentile SR et al (2019) Behavior of TiO2 and CeO2 nanoparticles and polystyrene nanoplastics in bottled mineral, drinking and Lake Geneva waters. Impact of water hardness and natural organic matter on nanoparticle surface properties and aggregation. Water (Switzerland) 11(4):721

    Google Scholar 

  • Raphael W, Martel T et al (2018) Surface engineering of wood substrates to impart barrier properties: a photochemical approach. Wood Sci Technol 52:193–207

    Article  CAS  Google Scholar 

  • Ruiz JC, Girard-Lauriault PL et al (2010) Plasma- and vacuum-ultraviolet (VUV) photo polymerisation of N- and O-rich thin films. Radiat Phys Chem 79:310–314

    Article  CAS  Google Scholar 

  • Ruppi S (2008) Enhanced performance of α-Al2O3 coatings by control of crystal orientation. Surf Coat Technol 202:4257–4269

    Article  CAS  Google Scholar 

  • Saha P, Pyne DK et al (2019) Tunable luminescence of graphene oxide-polyaniline nano-composite: effect of an anionic surfactant. J Lumin 206:218–226

    Article  CAS  Google Scholar 

  • Salameh S, Gómez-Hernández J et al (2017) Advances in scalable gas-phase manufacturing and processing of nanostructured solids: a review. Particuology 30:15–39

    Article  CAS  Google Scholar 

  • Sarah Glass BT, Abel Bernd, Schulze Agnes (2018) TiO2 as photosensitizer and photoinitiator for synthesis of photoactive TiO2-PEGDA hydrogel without organic photoinitiator. Front Chem 6:340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherzer T (2012) VUV-induced photopolymerization of acrylates. Macromol Chem Phys 213:324–334

    Article  CAS  Google Scholar 

  • Schulz C, Dreier T et al (2019) Gas-phase synthesis of functional nanomaterials: challenges to kinetics, diagnostics, and process development. Proc Combust Inst 37(1):83–108

    Article  CAS  Google Scholar 

  • Shafiei-Irannejad V, Soleymani J et al (2019) Advanced nanomaterials towards biosensing of insulin: analytical approaches. Trends Anal Chem 16:1–12

    Article  CAS  Google Scholar 

  • Shi D, Guo Z et al (2015) Basic properties of nanomaterials nanomaterials and devices, Micro and nano technologies, pp. 1-23

    Google Scholar 

  • Show Y (2011) Selective growth of carbon nanotube at low temperate using triode type plasma enhanced CVD method. Diam Relat Mater 20(7):1081–1084

    Article  CAS  Google Scholar 

  • Singh N, Joshi A et al (2016) Engineered nanomaterials for biomedicine: advancements and hazards. In: engineering of nanobiomaterials. William Andrew Publishing, New York, pp 307–328

    Google Scholar 

  • Subjalearndee N, Hegemann D et al (2018) Structural development of nanosilver on metal oxide nanofibrous membrane by plasma enhanced chemical vapor deposition (PECVD). Appl Surf Sci 452:306–313

    Article  CAS  Google Scholar 

  • Tavares J, Coulombe S (2011) Dual plasma synthesis and characterization of a stable copper–ethylene glycol nanofluid. Powder Technol 210(2):132–142

    Article  CAS  Google Scholar 

  • Truica-Marasescu F, Ruiz JC et al (2012) Vacuum-ultraviolet (VUV) photo-polymerization of amine-rich thin films from ammonia-hydrocarbon gas mixtures. Plasma Processes Polym 9:473–484

    Article  CAS  Google Scholar 

  • Tyagi A, Walia RS et al (2019) Tribological behavior of temperature dependent environment friendly thermal CVD diamond coating. Diam Relat Mater 96:148–159

    Article  CAS  Google Scholar 

  • Vallejos S, Maggio FD et al (2016) Chemical vapour deposition of gas sensitive metal oxides. Chemosensors 4:18

    Article  CAS  Google Scholar 

  • Vasudev MC, Anderson KD et al (2013) Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications. ACS Appl Mater Interfaces 5:3983–3994

    Article  CAS  PubMed  Google Scholar 

  • Vidal FMS, Gleizes A et al (2000) Photo-assisted MOCVD of copper using Cu(hfa)(CVD) as precursor. Appl Surf Sci 168:57–60

    Article  CAS  Google Scholar 

  • Wang S, Wang X et al (2019) The surface-functionalization and application of nano-SiO2 in leather. Chem Res 30(1):211–220

    Google Scholar 

  • Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf 18(4):481–485

    Article  CAS  Google Scholar 

  • Xia T, Fortner JD et al (2015) Transport of sulfide-reduced graphene oxide in saturated quartz sand: cation-dependent retention mechanisms. Environ Sci Technol 49(19):11468–11475

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Guo X et al (2019) Aggregation of oxidized multi-walled carbon nanotubes: interplay of nanomaterial surface O-functional groups and solution chemistry factors. Environ Pollut 251:921–929

    Article  CAS  PubMed  Google Scholar 

  • Yagci Y (2012) New photoinitiating systems designed for polymer/inorganic hybrid nanocoatings. J Coat Technol Res 9:125–134

    Article  CAS  Google Scholar 

  • Yang Y, Xue X et al (2019) Improving the charge transfer performance of Si nanomaterial through C surface modification: a first-principles study. Curr Appl Phys 19(7):817–821

    Article  Google Scholar 

  • Zhang B, Liao YC (2008) Growth of coatings on nanoparticles by photoinduced chemical vapor deposition. J Nanopart Res 10(1):173–178

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y et al (2019) Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sensors Actuators B Chem 285:607–616

    Article  CAS  Google Scholar 

  • Zhou J, Ralston J (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the funding support from China Post‑doctoral Science Foundation (Grant No. 2019M650167), Start-up Fund of Natural Sciences Foundation of Guangdong Province, China (Grant No. 2015A030310189) as well as Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019BC099).

Author information

Authors and Affiliations

Authors

Contributions

This article’s materials are collected by all the authors, and drafted and completed by XZ and XR. CW also made major contributions at the revision stage. XR provides the major project funding.

Corresponding author

Correspondence to Xiaojie Ren.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wei, C., Gai, Z. et al. Chemical vapor deposition and its application in surface modification of nanoparticles. Chem. Pap. 74, 767–778 (2020). https://doi.org/10.1007/s11696-019-00963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00963-y

Keywords

Navigation