Skip to main content
Log in

Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Damage evolution in metals during laser-shock loading (spallation) is a complex phenomenon accompanied by extremely high temperatures, pressures, and strain rates that affect the void nucleation/growth mechanisms. The current modeling efforts at the atomic scales to investigate the evolution of microstructure undergoing the spall failure at the atomic scales are limited to a hybrid atomistic–continuum method that combines the two-temperature model (TTM) with the molecular dynamics (MD) simulations. This manuscript demonstrates this capability by investigating the mechanisms of nucleation/evolution of voids for a nanocrystalline Al system experiencing an ultrafast laser pulse. This capability, however, is unable to model the laser shock response of experimental systems (with grain sizes greater than 100 nm and thicknesses in the microns) as well as the post-spall behavior (damage growth or recompression behavior). This work combines the TTM with the quasi-coarse-grained dynamics (QCGD) method to extend MD-TTM simulations to the mesoscales. The hybrid QCGD-TTM approach retains the laser energy absorption, heat generation/transfer, and microstructure evolution (melting, defects, and damage) behavior predicted by MD-TTM simulations. The QCGD-TTM simulations allow the investigation of the wave propagation behavior, the evolution of microstructure (defects and damage), temperature, and pressure at the time and length scales of laser-shock experiments. The QCGD-TTM simulations reported here investigate the nucleation and post-spall damage evolution behavior during spall failure of sc-Al and 0.5 µm grain-sized pc-Al films with a thickness of up to 2 µm. The QCGD-TTM-predicted damage evolution behavior captures the post-spall behavior observed experimentally and retains the atomistic characteristics of void nucleation and void collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Meyers MA, Gregori F, Kad BK et al (2002) Laser-induced shock compression of monocrystalline copper: characterization and analysis. Acta Mater 51:1211–1228. https://doi.org/10.1016/S1359-6454(02)00420-2

    Article  Google Scholar 

  2. Eliezer S, Moshe E, Eliezer DAN (2002) Laser-induced tension to measure the ultimate strength of metals related to the equation of state. Laser Part Beams 20:87–92. https://doi.org/10.1017/S0263034602201123

    Article  CAS  Google Scholar 

  3. Remington TP, Hahn EN, Zhao S et al (2018) Spall strength dependence on grain size and strain rate in tantalum. Acta Mater 158:313. https://doi.org/10.1016/j.actamat.2018.07.048

    Article  CAS  Google Scholar 

  4. Remington TP, Remington BA, Hahn EN, Meyers MA (2017) Deformation and failure in extreme regimes by high-energy pulsed lasers: a review. Mater Sci Eng, A 688:429. https://doi.org/10.1016/j.msea.2017.01.114

    Article  CAS  Google Scholar 

  5. Ashitkov SI, Komapov PS, Agranat MB, Kanel GI, Fortov VE (2014) Measurements of strength of metals in a picosecond time range. J Phys Conf Ser 500:112006. https://doi.org/10.1088/1742-6596/500/11/112006

    Article  Google Scholar 

  6. Agranat MB, Ashitkov SI, Komarov PS (2014) Metal behavior near theoretical ultimate strength in experiments with femtosecond laser pulses. Mech Solids 49:643–648. https://doi.org/10.3103/S0025654414060053

    Article  Google Scholar 

  7. Cuq-Lelandais JP, Boustie M, Berthe L et al (2009) Spallation generated by femtosecond laser driven shocks in thin metallic targets. J Phys D Appl Phys 42:065402. https://doi.org/10.1088/0022-3727/42/6/065402

    Article  Google Scholar 

  8. Morard G, de Rességuier T, Vinci T et al (2010) High-power laser shock-induced dynamic fragmentation of iron foils. Phys Rev B 82:174102. https://doi.org/10.1103/PhysRevB.82.174102

    Article  CAS  Google Scholar 

  9. Tomko JA, Giri A, Donovan BF, Bubb DM, O’Malley SM, Hopkins PE (2017) Energy confinement and thermal boundary conductance effects on short-pulsed thermal ablation thresholds in thin films. Physi Rev B 96:014108. https://doi.org/10.1103/PhysRevB.96.014108

    Article  Google Scholar 

  10. Meyers MA, Taylor Aimone C (1983) Dynamic fracture (spalling) of metals. Prog Mater Sci 28:1–96. https://doi.org/10.1016/0079-6425(83)90003-8

    Article  CAS  Google Scholar 

  11. Curran DR, Seaman L, Shockey DA (1987) Dynamic failure of solids. Phys Rep 147:253–388. https://doi.org/10.1016/0370-1573(87)90049-4

    Article  CAS  Google Scholar 

  12. Crowhurst JC, Armstrong MR, Knight KB, Zaug JM, Behymer EM (2011) Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold. Phys Rev Lett 107:144302. https://doi.org/10.1103/PhysRevLett.107.144302

    Article  CAS  Google Scholar 

  13. Whitley VH, McGrane SD, Eakins DE, Bolme CA, Moore DS, Bingert JF (2011) The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J Appl Phys. https://doi.org/10.1063/1.3506696

    Article  Google Scholar 

  14. Kanel GI (2014) Unusual behaviour of usual materials in shock waves. J Phys Conf Ser 500:012001

    Article  Google Scholar 

  15. Zaretsky EB, Kanel GI (2012) Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression. J Appl Phys 112:073504. https://doi.org/10.1063/1.4755792

    Article  CAS  Google Scholar 

  16. Kanel GI, Razorenov SV, Baumung K, Singer J (2001) Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J Appl Phys 90:136–143. https://doi.org/10.1063/1.1374478

    Article  CAS  Google Scholar 

  17. Agranat MB, Ashitkov SI, Komarov PS (2015) Metal behavior near theoretical ultimate strength in experiments with femtosecond laser pulses. Mech Solids 49:643–648. https://doi.org/10.3103/s0025654414060053

    Article  Google Scholar 

  18. Kanel GI (2010) Spall fracture: methodological aspects, mechanisms and governing factors. Int J Fract 163:173–191. https://doi.org/10.1007/s10704-009-9438-0

    Article  Google Scholar 

  19. Dalton DA, Brewer J, Bernstein AC et al (2008) Laser-induced spall of aluminum and aluminum alloys at high strain rates. AIP Conf Proc 501:501–504. https://doi.org/10.1063/1.2833119

    Article  Google Scholar 

  20. Moshe E, Eliezer S, Henis Z et al (2000) Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state. Appl Phys Lett 76:1555–1557. https://doi.org/10.1063/1.126094

    Article  CAS  Google Scholar 

  21. Moshe E, Eliezer S, Dekel E et al (1998) An increase of the spall strength in aluminum, copper, and metglas at strain rates larger than 107 s−1. J Appl Phys 83:4004–4011. https://doi.org/10.1063/1.367222

    Article  CAS  Google Scholar 

  22. Tamura H, Kohama T, Kondo K, Yoshida M (2001) Femtosecond-laser-induced spallation in aluminum. J Appl Phys 89:3520–3522. https://doi.org/10.1063/1.1346996

    Article  CAS  Google Scholar 

  23. Ashitkov SI, Agranat MB, Kanel’ GI, Komarov PS, Fortov VE (2010) Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses. JETP Lett 92:516–520. https://doi.org/10.1134/s0021364010200051

    Article  CAS  Google Scholar 

  24. Sokolowski-Tinten K, Blome C, Blums J et al (2003) Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422:287–289. https://doi.org/10.1038/nature01490

    Article  CAS  Google Scholar 

  25. Williamson S, Mourou G, Li JCM (1984) Time-resolved laser-induced phase transformation in aluminum. Phys Rev Lett 52:2364–2367. https://doi.org/10.1103/PhysRevLett.52.2364

    Article  CAS  Google Scholar 

  26. Zhu P, Chen J, Li R et al (2013) Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering. Appl Phys Lett 103:231914. https://doi.org/10.1063/1.4840355

    Article  CAS  Google Scholar 

  27. Martin AA, Calta NP, Hammons JA et al (2019) Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging. Mater Today Adv 1:100002. https://doi.org/10.1016/j.mtadv.2019.01.001

    Article  Google Scholar 

  28. Lind J, Jensen BJ, Barham M, Kumar M (2018) In situ dynamic compression wave behavior in additively manufactured lattice materials. J Mater Res 34:2–19. https://doi.org/10.1557/jmr.2018.351

    Article  CAS  Google Scholar 

  29. Sliwa M, McGonegle D, Wehrenberg C et al (2018) Femtosecond X-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum. Phys Rev Lett 120:265502. https://doi.org/10.1103/PhysRevLett.120.265502

    Article  CAS  Google Scholar 

  30. Milathianaki D, Boutet S, Williams GJ et al (2013) Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342:220–223. https://doi.org/10.1126/science.1239566

    Article  CAS  Google Scholar 

  31. Remington BA, Bazan G, Belak J et al (2004) Materials science under extreme conditions of pressure and strain rate. Metall Mater Transac A 35:2587–2607. https://doi.org/10.1007/s11661-004-0205-6

    Article  Google Scholar 

  32. Turley WD, Stevens GD, Hixson RS et al (2016) Explosive-induced shock damage in copper and recompression of the damaged region. J Appl Phys 120:085904. https://doi.org/10.1063/1.4962013

    Article  CAS  Google Scholar 

  33. Becker R, LeBlanc MM, Cazamias JU (2007) Characterization of recompressed spall in copper gas gun targets. J Appl Phys 102:093512. https://doi.org/10.1063/1.2802589

    Article  CAS  Google Scholar 

  34. Zhigilei LV, Volkov AN, Dongare AM (2012) Computational Study of Nanomaterials: From Large-Scale Atomistic Simulations to Mesoscopic Modeling. In: Bhushan B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_403

  35. Clayton JD (2018) Mesoscale models of interface mechanics in crystalline solids: a review. J Mater Sci 53:5515–5545. https://doi.org/10.1007/s10853-017-1596-2

    Article  CAS  Google Scholar 

  36. Dongare AM, LaMattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Proc Eng 10:3636–3641. https://doi.org/10.1016/j.proeng.2011.04.598

    Article  CAS  Google Scholar 

  37. Mackenchery K, Valisetty RR, Namburu RR, Stukowski A, Rajendran AM, Dongare AM (2016) Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu. J Appl Phys 119:044301. https://doi.org/10.1063/1.4939867

    Article  CAS  Google Scholar 

  38. Srinivasan SG, Baskes MI, Wagner GJ (2007) Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel. J Appl Phys 101:043504. https://doi.org/10.1063/1.2423084

    Article  CAS  Google Scholar 

  39. Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys Rev B 88:134101. https://doi.org/10.1103/PhysRevB.88.134101

    Article  CAS  Google Scholar 

  40. Agarwal G, Dongare AM (2016) Shock wave propagation and spall failure in single crystal Mg at atomic scales. J Appl Phys 119:145901. https://doi.org/10.1063/1.4944942

    Article  CAS  Google Scholar 

  41. Huang Y, Xiong Y, Li P et al (2019) Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation. Int J Plast 114:215–226. https://doi.org/10.1016/j.ijplas.2018.11.004

    Article  CAS  Google Scholar 

  42. Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108:113518. https://doi.org/10.1063/1.3517827

    Article  CAS  Google Scholar 

  43. Valisetty R, Dongare AM, Ianni J (2019) High performance computing simulations of spall phenomenon in a submicron thick nanocrystalline aluminum. Modell Simul Mater Sci Eng 27:065015. https://doi.org/10.1088/1361-651x/ab2796

    Article  CAS  Google Scholar 

  44. Chen J, Hahn EN, Dongare AM, Fensin SJ (2019) Understanding and predicting damage and failure at grain boundaries in BCC Ta. J Appl Phys 126:165902. https://doi.org/10.1063/1.5111837

    Article  CAS  Google Scholar 

  45. Anisimov SI, Kapeliovich BL, Perel'man TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys -JETP 39(2):375–377

  46. Hakkinen H, Landman U (1993) Superheating, melting, and annealing of copper surfaces. Phys Rev Lett 71:1023–1026. https://doi.org/10.1103/PhysRevLett.71.1023

    Article  CAS  Google Scholar 

  47. Schäfer C, Urbassek HM, Zhigilei LV (2002) Metal ablation by picosecond laser pulses: a hybrid simulation. Phys Rev B 66:115404. https://doi.org/10.1103/PhysRevB.66.115404

    Article  CAS  Google Scholar 

  48. Ivanov DS, Zhigilei LV (2003) Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B 68:064114. https://doi.org/10.1103/PhysRevB.68.064114

    Article  Google Scholar 

  49. Ivanov DS, Zhigilei LV (2007) Kinetic limit of heterogeneous melting in metals. Phys Rev Lett 98:195701. https://doi.org/10.1103/PhysRevLett.98.195701

    Article  CAS  Google Scholar 

  50. Lin Z, Zhigilei LV, Celli V (2008) Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77:075133. https://doi.org/10.1103/PhysRevB.77.075133

    Article  Google Scholar 

  51. Ivanov DS, Zhigilei LV (2004) Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness. Appl Phys A 79:977–981. https://doi.org/10.1007/s00339-004-2607-0

    Article  CAS  Google Scholar 

  52. Galitskiy S, Ivanov DS, Dongare AM (2018) Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales. J Appl Phys 124:205901. https://doi.org/10.1063/1.5051618

    Article  Google Scholar 

  53. Dongare AM (2014) Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales. Phil Mag 94:3877–3897. https://doi.org/10.1080/14786435.2014.961992

    Article  CAS  Google Scholar 

  54. Agarwal G, Dongare AM (2017) Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales. J Mater Sci 52:10853–10870. https://doi.org/10.1007/s10853-017-1243-y

    Article  CAS  Google Scholar 

  55. Agarwal G, Valisetty RR, Namburu RR, Rajendran AM, Dongare AM (2017) The quasi-coarse-grained dynamics method to unravel the mesoscale evolution of defects/damage during shock loading and spall failure of polycrystalline Al microstructures. Sci Rep 7:12376. https://doi.org/10.1038/s41598-017-12340-4

    Article  CAS  Google Scholar 

  56. Agarwal G, Dongare AM (2018) Defect and damage evolution during spallation of single crystal Al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Comput Mater Sci 145:68–79. https://doi.org/10.1016/j.commatsci.2017.12.032

    Article  CAS  Google Scholar 

  57. Suresh S, Lee S-W, Aindow M, Brody H, Champagne VR, Dongare AM (2020) Unraveling mesoscale evolution of pressure, temperature, and strains during cold spray single particle Impact. Acta Mater. 182:197. https://doi.org/10.1038/s41598-018-28437-3

  58. Suresh S, Lee S-W, Aindow M, Brody HD, Champagne VK, Dongare AM (2020) Mesoscale modeling of jet initiation behavior and microstructural evolution during cold spray single particle impact. Acta Mater 182:197–206. https://doi.org/10.1016/j.actamat.2019.10.039

    Article  CAS  Google Scholar 

  59. Agarwal G, Valisetty RR, Dongare AMM (2020) Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales. Int J Plast 128:102678. https://doi.org/10.1016/j.ijplas.2020.102678

  60. Derlet PM, Van Swygenhoven H (2003) Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Phys Rev B. https://doi.org/10.1103/PhysRevB.67.014202

    Article  Google Scholar 

  61. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407. https://doi.org/10.1103/PhysRevB.59.3393

    Article  CAS  Google Scholar 

  62. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088. https://doi.org/10.1103/PhysRevB.58.11085

    Article  CAS  Google Scholar 

  63. Honeycutt DJ, Anderse HC (1987) Molecular dynamics study of melting and frrezing of small Leonard-Jones clusters. J Phys Chem 91:4950–4963. https://doi.org/10.1021/j100303a014

    Article  CAS  Google Scholar 

  64. Dongare AM (2020) Challenges to model the role of heterogeneities on the shock response and spall failure of metallic materials at the mesoscales. J Mater Sci 55:3157–3166. https://doi.org/10.1007/s10853-019-04260-7

    Article  CAS  Google Scholar 

  65. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng. https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

Download references

Acknowledgements

“The MD-TTM and QCGD-TTM simulations are carried out using the high-performance computing (HPC) facilities at the University of Connecticut. This material is based upon work supported by the U. S. Army Research Office under contract/Grant Number W911NF-14-1-0257. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the US Army Research Office or of the US Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash M. Dongare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galitskiy, S., Dongare, A.M. Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales. J Mater Sci 56, 4446–4469 (2021). https://doi.org/10.1007/s10853-020-05523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05523-4

Navigation