Skip to main content
Log in

Spall fracture: methodological aspects, mechanisms and governing factors

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The dynamic tensile strength of materials at load durations of a few microseconds or less is studied by analyzing the spall phenomena under shock pulse loading. The paper is devoted to discussing the methodology and capabilities of the technique to measure spall strength, its error sources, spall fracture of materials of different classes and the factors governing the high-rate fracture of metals and alloys under such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, New York

    Google Scholar 

  • Balibar S, Caupin F (2003) Metastable liquids. J Phys Condens Matter 15: S75–S82

    Article  CAS  ADS  Google Scholar 

  • Baumung K, Kanel GI, Razorenov SV, Rusch D, Singer J, Utkin AV (1997) Investigations of the dynamic strength variations in metals. J Phys IV France 7: C3–927

    Article  Google Scholar 

  • Besold G, Mouritsen OG (1994) Grain-boundary melting: a Monte-Carlo study. Phys Rev B 50: 6573–6576

    Article  CAS  ADS  Google Scholar 

  • Bogach AA, Kanel GI, Razorenov SV, Utkin AV, Protasova SG, Sursaeva VG (1998) Resistance of zinc crystals to shock deformation and fracture at elevated temperatures. Phys Solid State 40: 1676–1680

    Article  CAS  ADS  Google Scholar 

  • Černý M, Pokluda J (2007) Influence of superimposed biaxial stress on the tensile strength of perfect crystals from first principles. Phys Rev B 76: 024115

    Article  ADS  Google Scholar 

  • Czarnotaa C, Merciera S, Molinari (2006) Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum. Int J Fract 141: 177–194

    Article  Google Scholar 

  • Czarnotaa C, Jacquesb N, Merciera S, Molinari A (2008) Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J Mech Phys Solids 56: 1624–1650

    Article  ADS  Google Scholar 

  • Dalton DA, Brewer JL, Bernstein AC, Grigsby W, Milathianaki D, Jackson ED, Adams RG, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff EM, Ditmire T (2008) Laser-induced spallation of aluminum and Al alloys at strain rates above 2 × 106 s−1. J Appl Phys 104: 013526

    Article  ADS  Google Scholar 

  • Dash JD (1999) History of the search of continuous melting. Rev Modern Phys 71: 1737–1743

    Article  CAS  ADS  Google Scholar 

  • Dremin AN, Kanel GI, Chernikova OB (1981) Resistance of aluminum AD-1 and duraluminum D-16 to plastic deformation under shock compression conditions. J Appl Mech Techn Phys 22: 558–562

    Article  ADS  Google Scholar 

  • Faizullin MZ, Skripov VP (2007) Estimation of the Stability Limit of Metallic Crystals under Conditions of Isothermal Stretching. High Temp 45(6): 803

    Article  CAS  Google Scholar 

  • Frenkel YI (1946) Kinetic theory of liquids. Clarendon, Oxford

    MATH  Google Scholar 

  • Friakyz M, Sob M, Vitek V (2003) Ab initio calculation of tensile strength in iron. Phil Mag 83: 3529–3537

    Article  ADS  Google Scholar 

  • Furnish MD, Reinhart WD, Trott WM, Chhabildas LC, Vogler TJ (2006) Variability in dynamic properties of tantalum: spall, Hugoniot elastic limit and attenuation. In: Furnish MD et al. (eds) Shock compression of condensed matter—2005, American Institute of Physics, New York, Conference Proceedings 845:615–618

  • Garkushin GV, Razorenov SV, Kanel GI (2008) Submicrosecond strength of the D16T aluminum alloy at room and elevated temperatures. Phys Solid State 50: 839–843

    Article  CAS  ADS  Google Scholar 

  • Glusman VD, Kanel GI, Loskutov VF, Fortov VE, Khorev IE (1985) The resistance to deformation and fracture of steel 35X3NM in the shock loading conditions. Probl Prochnosti (USSR) 8: 52

    Google Scholar 

  • Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36: 353–384

    Article  ADS  Google Scholar 

  • Gray GT III, Bourne NK, Zocher MA, Maudlin PJ, Millett JCF (2000) Influence of crystallographic anisotropy on the Hopkinson fracture “spallation” of zirconium. In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter–1999. American Institute of Physics, Woodbury, pp 509–512

    Google Scholar 

  • Gray GT III, Lopez MF, Bourne NK, Millett JCF, Vecchio KS (2002) Influence of microstructural anisotropy on the spallation of 1080 eutectoid steel. In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter—2001. American Institute of Physics, Melville, pp 479–482

    Google Scholar 

  • Imre AR, Drozd-Rzoska A, Kraska T, Rzoska SJ, Wojciechowski KW (2008) Spinodal strength of liquids, solids and glasses. J Phys Condens Matter 20: 244104

    Article  ADS  Google Scholar 

  • Ivanov AG, Novikov SA (1961) Rarefaction shock waves in iron and steel. Soviet Phys—JETP 13: 1321–1323

    Google Scholar 

  • Joshi KD, Gupta SC (2007) On mechanical stability of molybdenum. High Press Res 27(2): 259–268

    Article  CAS  ADS  Google Scholar 

  • Kalmikov YB, Kanel GI, Parchomenko IP, Utkin AV, Fortov VE (1990) The behaviour of rubber in shock and rarefaction waves. J Appl Mech Techn Phys (USSR) 1: 126–130

    Google Scholar 

  • Kanel GI (1982) The work of spall fracture. Combust Explosions Shock Waves 18: 461–464

    Article  Google Scholar 

  • Kanel GI (2001) Distortion of the wave profiles in an elastoplastic body upon spalling. J Appl Mech Techn Phys 42: 358–362

    Article  Google Scholar 

  • Kanel GI, Petrova EN (1981) The strength of titanium VT6 at shock wave loading. In: Dremin AN et al. (ed) Workshop on detonation, Chernogolovka, Russia, pp 136–142 (in Russian)

  • Kanel GI, Razorenov SV, Fortov VE (1987) Cleavage strength of metals over a wide range of shock-load amplitudes. Soviet Physics Doklady 32: 413

    ADS  Google Scholar 

  • Kanel GI, Rasorenov SV, Fortov VE (1992) The dynamic strength of copper single crystals. In: Meyers MA, Murr K, Staudhammer K (eds) Shock-wave and high strain-rate phenomena in materials. Marcel Dekker, inc, New York, pp 775–782

    Google Scholar 

  • Kanel GI, Razorenov SV, Utkin AV, Fortov VE, Baumung K, Karow HU, Rush D, Licht V (1993) Spall strength of molybdenum single crystals. J Appl Phys 74: 7162–7165

    Article  CAS  ADS  Google Scholar 

  • Kanel GI, Razorenov SV, Utki AV, Baumung K, Karov HU, Licht V (1994) Spallations near the ultimate strength of solids. In: Schmidt SC, Shaner JW, Samara GA, Ross M (ed) High-pressure science and technology—1993. American Institute of Physics, AIP Conference Proceedings, vol 309. p 1043

  • Kanel GI, Razorenov SV, Bogatch AA, Utkin AV, Fortov VE, Grady DE (1996a) Spall fracture properties of aluminum and magnesium at high temperatures. J Appl Phys 79: 8310–8317

    Article  CAS  ADS  Google Scholar 

  • Kanel GI, Razorenov SV, Utkin AV, Grady DE (1996b) The spall strength of metals at elevated temperatures. In: Schmidt SC, Tao WC (eds) Shock compression of condensed matter—1995. American Institute of Physics, New York, pp 503–506

    Google Scholar 

  • Kanel GI, Razorenov SV, Baumung K, Singer J (2001) Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J Appl Phy 90: 136–143

    Article  CAS  ADS  Google Scholar 

  • Kanel GI, Razorenov SV, Fortov VE (2004) Shock-wave phenomena and the properties of condensed matter. Springer, New York

    Google Scholar 

  • Kanel GI, Nellis WJ, Savinykh AS, Razorenov SV, Rajendran AM (2009) Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa. J Appl Phys 106: 043524

    Article  ADS  Google Scholar 

  • Koller DD, Hixson RS, Gray GT III, Rigg PA, Addessio LB, Cerreta EK, Maestas JD, Yablinsky CA (2005) Influence of shock-wave profile shape on dynamically induced damage in high-purity copper. J Appl Phys 98: 103518

    Article  ADS  Google Scholar 

  • Kuksin AY, Norman GE, Stegailov VV (2007) The phase diagram and spinodal decomposition of metastable states of Lennard-Jones system. High Temp 45(1): 37

    Article  CAS  Google Scholar 

  • Luo SN, Ahrens TJ, Swift DC (2003) Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments. Phys Rev B 68: 134206

    Article  ADS  Google Scholar 

  • Luo SN, An Q, Germann TC, Han LB (2009) Shock-induced spall in solid and liquid Cu at extreme strain rates. J Appl Phys 106: 013502

    Article  ADS  Google Scholar 

  • Lynden-Bell RM (1995) A simulation study of induced disorder, failure and fracture of perfect metal crystals under uniaxial tension. J Phys Condens Matter 7: 4603–4624

    Article  CAS  ADS  Google Scholar 

  • McQueen RG, Marsh SP (1962) Ultimate yield strength of copper. J Appl Phys 33: 654–665

    Article  CAS  ADS  Google Scholar 

  • Minich RW, Cazamias JU, Kumar M, Schwartz AJ (2004) Effect of microstructural length scales on spall behavior of copper. Met Mat Trans A 35A: 2663–2673

    Article  CAS  Google Scholar 

  • Netz PA, Starr FW, Stanley HE, Barbosa MC (2001) Static and dynamic properties of stretched water. J Chem Phys 115: 344–348

    Article  CAS  ADS  Google Scholar 

  • Norman GE, Stegailov VV (2004) Simulation of ideal crystal superheating and decay. Mol Simul 30(6): 397–406

    Article  MATH  CAS  Google Scholar 

  • Novikov SA, Divnov II, Ivanov AG (1966) The study of fracture of steel, aluminum, and copper under explosive loading. Phys Metals Metal sci(USSR) 21: 608–615

    Google Scholar 

  • Ogorodnikov VA, Borovkova EY, Erunov SV (2004) Strength of some grades of steel and armco iron under shock compression and rarefaction at pressures of 2–200 GPa. Combust Explos Shock Waves 40: 591–596

    Article  Google Scholar 

  • Paisley DL, Warnes RH, Kopp RA (1992) Laser-driven flat plate impacts to 100 GPa with sub-nanosecond pulse radiation and resolution for material property studies. In: Schmidt SC et al (eds) Shock compression of condensed matter—1991. Elsevier Science Publishers BV, Amsterdam, pp 825–828

    Google Scholar 

  • Parkhomenko IP, Utkin AV (1990) Spall strength of plexiglass. In: Fortov et al. (ed) Investigations of material properties under extremal conditions. IVTAN, Moscow, pp 126–130 (in Russian)

  • Razorenov SV, Bogach AA, Kanel GI (1997) The effect of heat treatment and polymorphic transformations on the dynamic strength of steel 40 Kh. Phys Met Metallogr 83: 100–103

    Google Scholar 

  • Razorenov SV, Kanel GI, Fortov VE (2004) Iron at High Negative Pressures. JETP Lett 80: 348–350

    Article  CAS  ADS  Google Scholar 

  • Razorenov SV, Kanel GI, Savinykh AS, Fortov VE (2006) Large tensions and strength of iron in different structure states. In: Furnish MD et al. (eds) Shock compression of condensed matter—2005, AIP Conference Proceedings 845, New York, p 650

  • Razorenov SV, Kanel GI, Herrmann B, Zaretsky EB, and Ivanchihina GE (2007) Influence of nano-size inclusions on spall fracture of copper single crystals. In: Elert M et al. (eds) Shock compression of condensed matter—2007. American Institute of Physics, New York, Conference Proceedings, vol 955, pp 581–584

  • Razorenov SV, Garkushin GV, Kanel GI, Popov NN (2009) Shock-wave response of Ni-Ti shape memory alloys in the transformation temperature range. In: Elert ML et al. (eds) Shock compression of condensed matter—2009. American Institute of Physics, New York, (in print)

  • Rességuier T, Hallouin M (2008) Effects of the αε phase transition on wave propagation and spallation in laser shock-loaded iron. Phys Rev B 77: 174107

    Article  ADS  Google Scholar 

  • Rességuier T, Signor L, Dragon A, Severin P, Boustie M (2007) Spallation in laser shock-loaded tin below and just above melting on release. J Appl Phys 102: 073535

    Article  ADS  Google Scholar 

  • Sin’ko GV, Smirnov NA (2002) Ab initio calculations of the equation of state and elastic constants of aluminum in the region of negative pressures. JETP Lett 75(4): 184–186

    Article  ADS  Google Scholar 

  • Sin’ko GV, Smirnov NA (2004) Anomalous behavior of α-iron zero-temperature isotherm in the region of negative pressures. JETP Lett 79(11): 537–541

    Article  ADS  Google Scholar 

  • Skripov VP (1974) Metastable liquids. Wiley, New York and Toronto

    Google Scholar 

  • Skripov VP, Faizullin MZ (2006) Crystal-Liquid-Gas Transitions and Thermodynamic Similarity. Wiley-VCH Verlag GmBH and Co. KGaA, Weinheim

    Book  Google Scholar 

  • Speedy RJ (1982) Stability-limit conjecture. An interpretation of the properties of water. J Phys Chem 86: 982–991

    Article  CAS  Google Scholar 

  • Stepanov GV (1976) Spall fracture of metals by elastic-plastic loading waves. Problemy Prochnosti 8:66–70 (in Russian)

    Google Scholar 

  • Thakur AM, Thadhani NN, Schwarz RB (1990) Martensitic transformation in alloys induced by tensile stress pulses. In: Schmidt SC, Johnson JN, Davison LW (eds) Shock compression of condensed matter—1989. Elsevier Science Publishers BV, Amsterdam, p 139

    Google Scholar 

  • Tonks DL, Alexander DJ, Sheffield SA, Robbins DL, Zurek AK, Thissell WR (2000) Spallation strength of single crystal and polycrystalline copper. J Phys IV France, 10:Pr9-787-792

    Google Scholar 

  • Trivedi PB, Asay JR, Gupta YM, Field DP (2007) Influence of grain size on the tensile response of aluminum under plate-impact loading. J Appl Phys 102: 083513

    Article  ADS  Google Scholar 

  • Utkin AV (1993) Influence of the initial damage rate on the forming spall pulse. J Appl Mech Tech Phys (USSR) 34: 578–584

    Article  ADS  Google Scholar 

  • Utkin AV, Sosikov VA, Bogach AA, Fortov VE (2004) Tension of liquids by shock waves. In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter—2003, AIP Conference Proceedings, Melville, New York, vol 706. pp 765–770

  • Zaretsky EB (2008) Impact response of titanium from the ambient temperature to 1000°C. J Appl Phys 104: 123505

    Article  ADS  Google Scholar 

  • Zaretsky EB (2009) Shock response of iron between 143 and 1275 K. J Appl Phys 106: 023510

    Article  ADS  Google Scholar 

  • Zaretsky EB, Kanel GI (2009) Dynamic response of Sn over the temperature range 115–503 K. DYMAT 2009, pp 27–33. doi:10.1051/dymat/2009004

  • Zel’dovich YaB (1942) Toward the theory of formation of new phase. Zh Eksp Teor Fiz 12: 525

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Kanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanel, G.I. Spall fracture: methodological aspects, mechanisms and governing factors. Int J Fract 163, 173–191 (2010). https://doi.org/10.1007/s10704-009-9438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9438-0

Keywords

Navigation