Skip to main content
Log in

Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The threshold laser fluence for the onset of surface melting is calculated for Ni films of different thicknesses and for a bulk Ni target using a combined atomistic-continuum computational model. The model combines the classical molecular dynamics (MD) method for simulation of non-equilibrium processes of lattice superheating and fast phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons based on the two-temperature model (TTM). In the hybrid TTM-MD method, MD substitutes the TTM equation for the lattice temperature, and the diffusion equation for the electron temperature is solved simultaneously with MD integration of the equations of motion of atoms. The dependence of the threshold fluence on the film thickness predicted in TTM-MD simulations qualitatively agrees with TTM calculations, while the values of the thresholds for thick films and bulk targets are ∼10% higher in TTM-MD. The quantitative differences between the predictions of TTM and TTM-MD demonstrate that the kinetics of laser melting as well as the energy partitioning between the thermal energy of atomic vibrations and energy of the collective atomic motion driven by the relaxation of the laser-induced pressure should be taken into account in interpretation of experimental results on surface melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias: Appl. Phys. A 69, S99 (1999)

  2. M.B. Agranat, S.I. Ashitkov, V.E. Fortov, A.V. Kirillin, A.V. Kostanovskii, S.I. Anisimov, P.S. Kondratenko: Appl. Phys. A 69, 637 (1999)

    Article  ADS  Google Scholar 

  3. B. Lin, H.E. Elsayed–Ali: Surf. Sci. 498, 275 (2002)

    Article  ADS  Google Scholar 

  4. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevich, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde: Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  5. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller: Science 302, 1382 (2003)

    Article  ADS  Google Scholar 

  6. O.P. Uteza, E.G. Gamaly, A.V. Rode, M. Samoc, B. Luther-Davies: in preparation.

  7. S. Preuss, A. Demchuk, M. Stuke: Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  8. T.D. Bennett, C.P. Grigoropoulos, D.J. Krajnovich: J. Appl. Phys. 77, 849 (1995)

    Article  ADS  Google Scholar 

  9. M. Hashida, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner: Appl. Surf. Sci. 197198, 862 (2002)

    Google Scholar 

  10. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man: Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  11. D.S. Ivanov, L.V. Zhigilei: Phys. Rev. Lett. 91, 105701 (2003)

    Article  ADS  Google Scholar 

  12. D.S. Ivanov, L.V. Zhigilei: Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  13. E. Leveugle, D.S. Ivanov, L.V. Zhigilei: Appl. Phys. A, in press

  14. C. Schäfer, H.M. Urbassek, L.V. Zhigilei: Phys. Rev. B 66, 115404 (2002)

    Article  ADS  Google Scholar 

  15. D.S. Ivanov, L.V. Zhigilei, E.M. Bringa, M. De Koning, B.A. Remington, M.J. Caturla, S.M. Pollaine: Proceedings of APS Topical Con-ference on Shock Compression of Condensed Matter, in press (2003)

  16. L.V. Zhigilei, B.J. Garrison: Mat. Res. Soc. Symp. Proc. 538, 491 (1999)

    Article  Google Scholar 

  17. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly: Acta Mater. 49, 4005 (2001)

    Article  Google Scholar 

  18. CRC Handbook of Chemistry and Physics, 72nd edition, ed. by D.R. Lide, (CRC Press, Boca Raton, FL 1991)

  19. Due to a minor difference in the definition of the diffusive penetration depth of excited electrons used in this work and in [1, 21], the value of Lc is larger by a factor of 25/8 as compared to the one reported in [1]. A more significant quantitative discrepancy is observed between the results of TTM calculations reported in [1] and the results presented in Fig. 1b of this paper. In particular, the saturation fluences at which the melting temperature is reached at the surface of thick Ni samples is 220 J/m2 in [1] (Fig. 8b) and 363 J/m2 in our calculations (Fig. 1b). This discrepancy is due to a mistake in the TTM code used in [1], as identified through private communication with one of the authors of [1], Dr. J. Güdde . New test calculations performed by Dr. Güdde and Dr. Rethfeld agree with the data presented in this paper.

  20. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov: Phys. Rev. B 65, 092103 (2002)

    Article  ADS  Google Scholar 

  21. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao: Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.V. Zhigilei.

Additional information

PACS

61.80.Az; 64.70.Dv; 02.70.Ns

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, D., Zhigilei, L. Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness. Appl. Phys. A 79, 977–981 (2004). https://doi.org/10.1007/s00339-004-2607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2607-0

Keywords

Navigation