Skip to main content
Log in

A review on phase-field models of brittle fracture and a new fast hybrid formulation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this contribution we address the issue of efficient finite element treatment for phase-field modeling of brittle fracture. We start by providing an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities. Within the formulations stemming from Griffith’s theory, we focus on quasi-static models featuring a tension-compression split, which prevent cracking in compression and interpenetration of the crack faces upon closure, and on the staggered algorithmic implementation due to its proved robustness. In this paper, we establish an appropriate stopping criterion for the staggered scheme. Moreover, we propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem. This enables a significant reduction of computational cost—about one order of magnitude—with respect to the available (non-linear) models. The conceptual and structural similarities of the hybrid formulation to gradient-enhanced continuum damage mechanics are outlined as well. Several benchmark problems are solved, including one with own experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143

    Article  MathSciNet  Google Scholar 

  2. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  MATH  Google Scholar 

  3. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  4. Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118–121

    Article  Google Scholar 

  5. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501

    Article  Google Scholar 

  6. Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368

    Article  MATH  Google Scholar 

  7. Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95

    Article  Google Scholar 

  8. Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen CS, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev E 71:036117

    Article  Google Scholar 

  9. Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105504

    Article  Google Scholar 

  10. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MATH  MathSciNet  Google Scholar 

  11. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224

    Article  Google Scholar 

  13. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634

    Article  Google Scholar 

  14. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  15. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MATH  MathSciNet  Google Scholar 

  16. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  MATH  MathSciNet  Google Scholar 

  17. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  MATH  MathSciNet  Google Scholar 

  18. Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, Oxford

    Google Scholar 

  19. Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  MATH  MathSciNet  Google Scholar 

  20. Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20:1021–1048

    Article  MATH  MathSciNet  Google Scholar 

  21. Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143

    Article  MATH  Google Scholar 

  22. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217—-220:77–95

    Article  MathSciNet  Google Scholar 

  23. Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129

    Article  Google Scholar 

  24. Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301

    Article  MathSciNet  Google Scholar 

  25. Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161

    Article  MATH  MathSciNet  Google Scholar 

  26. Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192

    Article  MATH  MathSciNet  Google Scholar 

  27. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403

    Article  MATH  Google Scholar 

  28. Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, Netherlands

    Book  MATH  Google Scholar 

  29. Murakami S (2012) Continuum damage mechanics. Springer Science and Business Media, Netherlands

    Book  Google Scholar 

  30. Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models: I. Formulation. Int J Solids Struct 23:821–840

    Article  MATH  Google Scholar 

  31. Mazars J (1986) A description of micro- and macro-scale damage of concrete structures. J Eng Fract Mech 25:729–737

    Article  Google Scholar 

  32. de Vree JHP, Brekelmans WAM, Gils MAJ (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588

    Article  MATH  Google Scholar 

  33. Pijaudier-Cabot G, Baz̆ant ZP (1987) Nonlocal damage theory. J Eng Mech 118:1512–1533

  34. Baz̆ant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. ASME J Appl Mech 55:287–293

    Article  Google Scholar 

  35. Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory: application to concrete. ASCE J Eng Mech 115:345–365

    Article  Google Scholar 

  36. Pijaudier-Cabot G, Huerta A (1991) Finite element analysis of bifurcation in nonlocal strain softening solids. Comput Methods Appl Mech Eng 90:905–919

    Article  Google Scholar 

  37. Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62

    Article  Google Scholar 

  38. Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48:980–1012

    Article  MATH  MathSciNet  Google Scholar 

  39. Winkler B (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton, Dissertation. University of Innsbruck, Austria

  40. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2d LEFM problems. Eng Fract Mech 55:321–334

    Article  Google Scholar 

  41. Saxena A, Hudak SJ (1987) Review and extension of compliance information for common crack growth specimens. Int J Fract 14:453–468

    Article  Google Scholar 

  42. Watanabe T (2011) Analytical research on method for applying interfacial fracture mechanics to evaluate strength of cementitious adhesive interfaces for thin structural finish details. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry, pp 67–82, ISBN: 978-953-307-351-4

Download references

Acknowledgments

This research was funded by the European Research Council, ERC Starting Researcher Grant INTERFACES, Grant Agreement No. 279439. The assistance of Dr. Roland Kruse (Institute of Applied Mechanics, TU Braunschweig) with the experimental tests for example 6 in Sect. 4 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tymofiy Gerasimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambati, M., Gerasimov, T. & De Lorenzis, L. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55, 383–405 (2015). https://doi.org/10.1007/s00466-014-1109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1109-y

Keywords

Navigation