Skip to main content
Log in

Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fe3O4/P(GMA-DVB)/PAMAM/Au microspheres are fabricated to research the catalytic performances to 4-nitrophenol. In the preparation process, Fe3O4 microspheres act as magnetic cores, PAMAM dendrimers growing up on the surface of P(GMA-DVB) polymer work as carriers, and Au nanoparticles serve as catalytic materials. The stability of the prepared microspheres is evaluated by successively catalytic experiments to measure the conversion of 4-nitrophenol, and catalytic efficiency can still maintain up to 78.7% after ten cycles. Moreover, the effects of major factors including the concentration of the prepared microspheres and the temperature of reaction system on the conversion of 4-nitrophenol are also investigated in detail. The manuscript reveals that 4-nitrophenol can be almost converted to 4-aminophenol within 7 min at 45 °C in the case of using 1.0 g/L Fe3O4/P(GMA-DVB)/PAMAM/Au microspheres. Such excellent catalytic properties are ascribed to the optimum structure of the prepared microspheres, which favors the sufficient contact between Au nanoparticles and 4-nitrophenol. The results and strategies exhibited here provide insight into the preparation of sophisticated structures of catalysts to treat wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Richardson SD, Ternes TA (2018) Water analysis: emerging contaminants and current issues. Anal Chem 90:398–428

    Article  CAS  Google Scholar 

  2. Zarejousheghani M, Möder M, Borsdorf H (2013) A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device: selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples. Anal Chim Acta 798:48–55

    Article  CAS  Google Scholar 

  3. Li Y, Cao Y, Xie J, Jia D, Qin H, Liang Z (2015) Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal Commun 58:21–25

    Article  CAS  Google Scholar 

  4. Filik H, Çetintaş G, Koç SN, Gülce H, Boz İ (2014) Nafion-graphene composite film modified glassy carbon electrode for voltammetric determination of p-aminophenol. Russ J Electrochem 50:243–252

    Article  CAS  Google Scholar 

  5. Deka P, Bhattacharjee D, Sarmah P, Deka RC, Bharali P (2017) Catalytic reduction of water contaminant ‘4-nitrophenol’ over manganese oxide supported Ni nanoparticles. In: Kurisu F, Ramanathan AL, Kazmi AA, Kumar M (eds) Trends in Asian Water Environmental Science and Technology. Springer, Cham, pp 35–48

    Chapter  Google Scholar 

  6. Yarlagadda VN, Kadali R, Sharma N, Sekar R, Vayalam Purath V (2012) Rapid establishment of p-nitrophenol biodegradation in acetate-fed aerobic granular sludge. Appl Biochem Biotechnol 166:1225–1235

    Article  CAS  Google Scholar 

  7. Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70

    Article  Google Scholar 

  8. Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ Sci Technol 34:3474–3479

    Article  CAS  Google Scholar 

  9. Ángeles FDM, Emilio R, María FF, Marta P, Ángeles SM (2015) Degradation of organic pollutants by heterogeneous electro-fenton process using Mn-alginate composite. J Chem Technol Biotechnol 90:1439–1447

    Article  Google Scholar 

  10. Sugiyama M, Salehi Z, Tokumura M, Kawase Y (2012) Photocatalytic degradation of p-nitrophenol by zinc oxide particles. Water Sci Technol 65:1882–1886

    Article  CAS  Google Scholar 

  11. Xue J, Xiang H, Wang K, Zhang X, Wang S, Wang X, Cao H (2012) The preparation of carbon-encapsulated Fe/Co nanoparticles and their novel applications as bifunctional catalysts to promote the redox reaction for p-nitrophenol. J Mater Sci 47:1737–1744

    Article  CAS  Google Scholar 

  12. Sun J, Han Y, Fu H, Qu X, Xu Z, Zheng S (2017) Au@Pd/TiO2 with atomically dispersed Pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chem Eng J 313:1–9

    Article  CAS  Google Scholar 

  13. Jin C, Han J, Chu F, Wang X, Guo R (2017) Fe3O4@PANI hybrid shell as a multifunctional support for Au nanocatalysts with a remarkably improved catalytic performance. Langmuir 33:4520–4527

    Article  CAS  Google Scholar 

  14. Ye M, Zhou H, Zhang T, Zhang Y, Shao Y (2013) Preparation of SiO2@Au @TiO2 core–shell nanostructures and their photocatalytic activities under visible light irradiation. Chem Eng J 226:209–216

    Article  CAS  Google Scholar 

  15. Liu X, Li Y, Lee JW, Hong CY, Mou CY, Jang BWL (2012) Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Appl Catal A Gen 439–440:8–14

    Article  Google Scholar 

  16. Zheng Y, Wang A (2012) Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J Mater Chem 22:16552–16559

    Article  CAS  Google Scholar 

  17. Zhang P, Li R, Huang Y, Chen Q (2014) A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@C core–shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS Appl Mater Interfaces 6:2671–2678

    Article  CAS  Google Scholar 

  18. Li W, Feng X, Liu D, Zhang Y (2016) In situ redox strategy for large-scale fabrication of surfactant-free M-Fe2O3 (M = Pt, Pd, Au) hybrid nanospheres. Sci China Mater 59:191–199

    Article  CAS  Google Scholar 

  19. Su J, Zhang Y, Xu S, Wang S, Ding H, Pan S, Wang G, Li G, Zhao H (2014) Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale 6:5181–5192

    Article  CAS  Google Scholar 

  20. Filipe Luís C S, Machuqueiro Miguel, Darbre Tamis, Baptista António M (2016) Exploring the structural properties of positively charged peptide dendrimers. J Phys Chem B 120:11323–11330

    Article  CAS  Google Scholar 

  21. Ye R, Zhukhovitskiy AV, Deraedt CV, Toste FD, Somorjai GA (2017) Supported dendrimer-encapsulated metal clusters: toward heterogenizing homogeneous catalysts. Acc Chem Res 50:1894–1901

    Article  CAS  Google Scholar 

  22. Feng H, Zhang R, Yang X (2012) Synthesis of P(MBA-co-MAA) microsphere-grafted PAMAM dendrimers and their application as supporters for gold nanoparticles. Colloid Polym Sci 291:1329–1339

    Article  Google Scholar 

  23. Deraedt C, Melaet G, Ralston WT, Ye R, Somorjai GA (2017) Platinum and other transition metal nanoclusters (Pd, Rh) stabilized by PAMAM dendrimer as excellent heterogeneous catalysts: application to the methylcyclopentane (MCP) hydrogenative isomerization. Nano Lett 17:1853–1862

    Article  CAS  Google Scholar 

  24. Chen L, Cao W, Quinlan PJ, Berry RM, Tam KC (2015) Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. ACS Sustain Chem Eng 3:978–985

    Article  CAS  Google Scholar 

  25. Liu Y, Li C, Zhang H, Fan X, Liu Y, Zhang Q (2015) One-pot hydrothermal synthesis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals. Chem Eng J 259:779–786

    Article  CAS  Google Scholar 

  26. Fan L, Zhang B, Zhang H, Jia X, Chen X, Zhang Q (2016) Preparation of light core/shell magnetic composite microspheres and their application for lipase immobilization. RSC Adv 6:65911–65920

    Article  CAS  Google Scholar 

  27. Ma Y, Qiao M, Hou C, Chen Y, Ma M, Zhang H, Zhang Q (2015) Preparation of polyaniline (PANI)-coated Fe3O4 microsphere chains and PANI chain-like hollow spheres without using surfactants. RSC Adv 5:103064–103072

    Article  CAS  Google Scholar 

  28. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Abdullah Alothman Z, Alshehri SM (2016) Synthesis and characterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Adv 6:22679–22689

    Article  CAS  Google Scholar 

  29. Ma Y, Chen Y, Mei A, Qiao M, Hou C, Zhang H, Zhang Q (2016) Fabricating and tailoring polyaniline (PANI) nanofibers with high aspect ratio in a low-acid environment in a magnetic field. Chem Asian J 11:93–101

    Article  CAS  Google Scholar 

  30. Ma Y, Hou C, Zhang H, Qiao M, Chen Y, Zhang H, Zhang Q, Guo Z (2017) Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. J Mater Chem A 5:14041–14052

    Article  CAS  Google Scholar 

  31. Ma Y, Zhang C, Hou C, Zhang H, Zhang H, Zhang Q, Guo Z (2017) Cetyl trimethyl ammonium bromide (CTAB) micellar templates directed synthesis of water-dispersible polyaniline rhombic plates with excellent processability and flow-induced color variation. Polymer 117:30–36

    Article  CAS  Google Scholar 

  32. O’Neill L, Johnston C, Grant PS (2015) Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J Power Sources 274:907–915

    Article  Google Scholar 

  33. Pardieu E, Pronkin S, Dolci M, Dintzer T, Pichon BP, Begin D, Pham-Huu C, Schaaf P, Begin-Colin S, Boulmedais F (2015) Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene for supercapacitor application. J Mater Chem A 3:22877–22885

    Article  CAS  Google Scholar 

  34. Cheng J, Zhao S, Gao W, Jiang P, Li R (2017) Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B. React Kinet Mech Catal 121:797–810

    Article  CAS  Google Scholar 

  35. Ma Y, Qiao M, Chen Y, Hou C, Zhang B, Zhang Q (2015) Fabrication of electromagnetic Fe3O4@polyaniline nanofibers with high aspect ratio. RSC Adv 5:9986–9992

    Article  CAS  Google Scholar 

  36. Qiao M, Lei X, Ma Y, Tian L, He X, Su K, Zhang Q (2018) Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res 11:1500–1519

    Article  CAS  Google Scholar 

  37. Li Z, Jia Z, Ni T, Li S (2017) Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction. Appl Surf Sci 426:160–168

    Article  CAS  Google Scholar 

  38. Zhou W, Zhou Y, Liang Y, Feng X, Zhou H (2015) Silver nanoparticles on carboxyl-functionalized Fe3O4 with high catalytic activity for 4-nitrophenol reduction. RSC Adv 5:50505–50511

    Article  CAS  Google Scholar 

  39. Bao F, Tan F, Wang W, Qiao X, Chen J (2017) Facile preparation of Ag/Ni(OH)2 composites with enhanced catalytic activity for reduction of 4-nitrophenol. RSC Adv 7:14283–14289

    Article  CAS  Google Scholar 

  40. Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018) Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Sep Purif Technol 197:253–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant Nos. 51503116 and 51578298).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingliang Ma or Yong Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Yang, Y., Li, W. et al. Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. J Mater Sci 54, 323–334 (2019). https://doi.org/10.1007/s10853-018-2868-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2868-1

Keywords

Navigation