Skip to main content
Log in

Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Novel magnetic Au/Fe3O4@TiO2 hollow nanospheres (Au/Fe3O4@hTiO2) have been fabricated via a coating method controlled by versatile kinetics. The details of the structure and morphology, size of the novel catalysts were characterized by TEM, HRTEM, XRD, XPS, VSM and N2 adsorption–desorption. The Au/Fe3O4@hTiO2 nanospheres exhibit favorable catalytic performance in both the photodegradation of Rhodamine B (RhB) under visible light irradiation and the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride at room temperature. More importantly, it could be conveniently recycled through an external magnetic field meanwhile without decrement of catalytic activity after running seven times. The unique nanostructure of hollow magnetic nanospheres results in a highly efficient, recoverable, stable, and cost-effective multifunctional system, offering extensive opportunities in the field of versatile catalysts synthesis and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5):326–333. doi:10.1021/ar020204f

    Article  CAS  Google Scholar 

  2. Yoon K, Yang Y, Lu P, Wan D, Peng HC, Stamm Masias K, Fanson PT, Campbell CT, Xia Y (2012) A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers. Angew Chem Int Ed 51(38):9543–9546. doi:10.1002/anie.201203755

    Article  CAS  Google Scholar 

  3. Roy S, Palui G, Banerjee A (2012) The as-prepared gold cluster-based fluorescent sensor for the selective detection of As(III) ions in aqueous solution. Nanoscale 4(8):2734–2740. doi:10.1039/c2nr11786j

    Article  CAS  Google Scholar 

  4. To WP, Chan KT, Tong GS, Ma C, Kwok WM, Guan X, Low KH, Che CM (2013) Strongly luminescent gold(III) complexes with long-lived excited states: high emission quantum yields, energy up-conversion, and nonlinear optical properties. Angew Chem Int Ed 52(26):6648–6652. doi:10.1002/anie.201301149

    Article  CAS  Google Scholar 

  5. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. doi:10.1039/c1cs15237h

    Article  CAS  Google Scholar 

  6. Tian J, Yuan L, Zhang M, Zheng F, Xiong Q, Zhao H (2012) Interface-directed self-assembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization. Langmuir 28(25):9365–9371. doi:10.1021/la301453n

    Article  CAS  Google Scholar 

  7. Chen Z, Cui ZM, Niu F, Jiang L, Song WG (2010) Pd nanoparticles in silica hollow spheres with mesoporous walls: a nanoreactor with extremely high activity. Chem Commun 46(35):6524–6526. doi:10.1039/c0cc01786h

    Article  CAS  Google Scholar 

  8. Zhang N, Xu Y-J (2013) Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO2as a robust nanocatalyst achieved by a hollow core-shell strategy. Chem Mater 25(9):1979–1988. doi:10.1021/cm400750c

    Article  Google Scholar 

  9. Kamata K, Lu Y, Xia YN (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125(9):2384–2385. doi:10.1021/ja0292849

    Article  CAS  Google Scholar 

  10. Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis. Functionalization and applications. Adv Mater 26(20):3176–3205. doi:10.1002/adma.201305319

    Article  CAS  Google Scholar 

  11. Chen M, Wu LM, Zhou SX, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18(6):801–806. doi:10.1002/adma.200501528

    Article  CAS  Google Scholar 

  12. Du J, Qi J, Wang D, Tang Z (2012) Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ Sci 5(5):6914–6918. doi:10.1039/c2ee21264a

    Article  CAS  Google Scholar 

  13. Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132(34):11914–11916. doi:10.1021/ja105283s

    Article  CAS  Google Scholar 

  14. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. doi:10.1021/cr0500535

    Article  CAS  Google Scholar 

  15. Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD (2015) Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Appl Catal B 164:462–474. doi:10.1016/j.apcatb.2014.09.062

    Article  CAS  Google Scholar 

  16. Dai W-L, Xu H, Yang L-X, Luo X-B, Tu X-M, Luo Y (2015) Ultrasonic-assisted facile synthesis of plasmonic Ag@AgCl cuboids with high visible light photocatalytic performance for Rhodamine B degradation. Reac Kinet Mech Cat 115(2):773–786. doi:10.1007/s11144-015-0870-z

    Article  CAS  Google Scholar 

  17. Ye M, Zhang Q, Hu Y, Ge J, Lu Z, He L, Chen Z, Yin Y (2010) Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. Chemistry 16(21):6243–6250. doi:10.1002/chem.200903516

    Article  CAS  Google Scholar 

  18. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50(26):5904–5908. doi:10.1002/anie.201100637

    Article  CAS  Google Scholar 

  19. Lee I, Joo JB, Yin Y, Zaera F (2011) A Yolk@Shell Nanoarchitecture for Au/TiO2 Catalysts. Angew Chem Int Ed 123(43):10390–10393. doi:10.1002/ange.201007660

    Article  Google Scholar 

  20. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22. doi:10.1002/1521-4095(200101)13:1<11:aid-adma11>3.0.co;2-n

    Article  CAS  Google Scholar 

  21. Chen JS, Chen C, Liu J, Xu R, Qiao SZ, Lou XW (2011) Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem Commun 47(9):2631–2633. doi:10.1039/c0cc04471g

    Article  CAS  Google Scholar 

  22. Choi H, Stathatos E, Dionysiou DD (2006) Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B 63(1–2):60–67. doi:10.1016/j.apcatb.2005.09.012

    Article  CAS  Google Scholar 

  23. Livage J, Henry M, Sanchez C (1988) SOL–GEL chemistry of transition-metal oxides. Prog Solid State Chem 18(4):259–341. doi:10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  24. Li W, Yang J, Wu Z, Wang J, Li B, Feng S, Deng Y, Zhang F, Zhao D (2012) A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. J Am. Chem. doi:10.1021/ja3037146

    Google Scholar 

  25. Chi Y, Yuan Q, Li Y, Zhao L, Li N, Li X, Yan W (2013) Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J Hazard Mater 262:404–411. doi:10.1016/j.jhazmat.2013.08.077

    Article  CAS  Google Scholar 

  26. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  27. Cao C, Wei F, Qu J, Song W (2013) Programmed synthesis of magnetic magnesium silicate nanotubes with high adsorption capacities for lead and cadmium ions. Chem Eur J 19(5):1558–1562. doi:10.1002/chem.201203986

    Article  CAS  Google Scholar 

  28. Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao HJ (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3(2):701–705. doi:10.1039/c0nr00497a

    Article  CAS  Google Scholar 

  29. Wang M, Han J, Xiong H, Guo R (2015) Yolk@Shell nanoarchitecture of Au@r-GO/TiO(2) hybrids as powerful visible light photocatalysts. Langmuir 31(22):6220–6228. doi:10.1021/acs.langmuir.5b01099

    Article  CAS  Google Scholar 

  30. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688–689

    Article  CAS  Google Scholar 

  31. Li J, C-y Liu, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430. doi:10.1039/c2jm16386a

    Article  CAS  Google Scholar 

  32. Zhang P, Mo Z, Han L, Zhu X, Wang B, Zhang C (2014) Preparation and photocatalytic performance of magnetic TiO2/montmorillonite/Fe3O4nanocomposites. Ind Eng Chem Res 53(19):8057–8061. doi:10.1021/ie5001696

    Article  CAS  Google Scholar 

  33. Luo Z, Jiang Y, Myers BD, Isheim D, Wu J, Zimmerman JF, Wang Z, Li Q, Wang Y, Chen X, Dravid VP, Seidman DN, Tian B (2015) Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 348(6242):1451–1455. doi:10.1126/science.1257278

    Article  CAS  Google Scholar 

  34. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51(9):2229–2233. doi:10.1002/anie.201106515

    Article  CAS  Google Scholar 

  35. Gao S, Zhang Z, Liu K, Dong B (2016) Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl Catal B 188:245–252. doi:10.1016/j.apcatb.2016.01.074

    Article  CAS  Google Scholar 

  36. Li X, Zeng C, Jiang J, Ai L (2016) Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. J Mater Chem A 4:7476–7482. doi:10.1039/c6ta01054g

    Article  CAS  Google Scholar 

  37. Dong F, Guo W, Park SK, Ha CS (2012) Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications. Chem Commun 48(8):1108–1110. doi:10.1039/c1cc14831a

    Article  CAS  Google Scholar 

  38. Fan CM, Zhang LF, Wang SS, Wang DH, Lu LQ, Xu AW (2012) Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Nanoscale 4(21):6835–6840. doi:10.1039/c2nr31713c

    Article  CAS  Google Scholar 

  39. Xu D, Diao P, Jin T, Wu Q, Liu X, Guo X, Gong H, Li F, Xiang M, Ronghai Y (2015) Iridium oxide nanoparticles and iridium/iridium oxide nanocomposites: photochemical fabrication and application in catalytic reduction of 4-nitrophenol. ACS Appl Mater Interfaces 7(30):16738–16749. doi:10.1021/acsami.5b04504

    Article  CAS  Google Scholar 

  40. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129(48):14852–14853. doi:10.1021/ja076134v

    Article  CAS  Google Scholar 

  41. Lee R, Kumaresan Y, Yoon SY, Um SH, Kwon IK, Jung GY (2017) Design of gold nanoparticles-decorated SiO2@TiO2 core/shell nanostructures for visible light-activated photocatalysis. RSC Advances 7(13):7469–7475. doi:10.1039/C6RA27591E

    Article  CAS  Google Scholar 

  42. Chandra R, Mukhopadhyay S, Nath M (2016) TiO2@ZIF-8: a novel approach of modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles. Mater Lett 164:571–574. doi:10.1016/j.matlet.2015.11.018

    Article  CAS  Google Scholar 

  43. Shuang S, Lv R, Xie Z, Zhang Z (2016) Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO(2) Nanopillar Arrays. Sci Rep 6:26670. doi:10.1038/srep26670

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science-technology Support Plan Projects (No. 2014BAK16B01) and the Key Laboratory of Catalytic engineering of Gansu Province and Resources Utilization, Gansu Province for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Zhao, S., Gao, W. et al. Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B. Reac Kinet Mech Cat 121, 797–810 (2017). https://doi.org/10.1007/s11144-017-1185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1185-z

Keywords

Navigation