Skip to main content

Catalytic Reduction of Water Contaminant ‘4-Nitrophenol’ over Manganese Oxide Supported Ni Nanoparticles

  • Chapter
  • First Online:
Trends in Asian Water Environmental Science and Technology

Abstract

Nitroaromatic compounds (NACs) are among the largest and most important groups of industrial chemicals in use nowadays (Ju and Parales 2010; Tomei et al. 2010). The NACs, such as nitrophenol, nitrobenzene, nitrotoluene, and nitrobenzoates, are of considerable industrial importance as the main raw materials in the manufacture of various dyes, pharmaceuticals, pesticides and explosives (Tomei et al. 2010; Yi et al. 2006; Aditya et al. 2015). 4-Nitrophenol (4-NP) is one of the most common and important NACs, both in terms of quantities used and potential environmental impacts (Yi et al. 2006; Podeh et al. 1995; Aditya et al. 2015; Sarkar et al. 2011). 4-NP is mainly used for the manufacture of drugs (e.g. acetaminophen) and pesticides (e.g. methyl and ethyl parathion) and is also used in leather treatment, in dyestuff production, and for military purposes. Because of its regular and extensive use, 4-NP can be found as a pollutant in industrial wastewater streams associated with its formulation, distribution and application (Yi et al. 2006; Pozun et al. 2013). Moreover, hydrolysis of pesticides and herbicides can also release 4-NP into the subsurface and then contaminate groundwater resources (Labana et al. 2005). As the 4-NP released into the environment, its contamination can cause a significant environmental and public health risk, due to its acute toxicity and mutagenic potential (Yi et al. 2006; Podeh et al. 1995; Labana et al. 2005; Aditya et al. 2015; Pozun et al. 2013). The acute exposing of 4-NP may lead to blood disorders along with methemoglobin formation, liver and kidney damage, anemia, skin and eye irritation, and systemic poisoning. In particular, it may cause deleterious effects to ecological systems, due to the 4-NP contamination of rivers and groundwater resources [Zieris et al. (1988), Aditya et al. (2015)]. Therefore, 4-NP containing industrial wastewater should be uncontaminated before being discharged into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aditya, T., Pal, A. and Pal, T. (2015). Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun., 51(46): 9410–9431.

    Article  CAS  Google Scholar 

  • An, M., Cui, J. and Wang, L. (2014). Magnetic Recyclable Nanocomposite Catalysts with Good Dispersibility and High Catalytic Activity. J. Phys. Chem. C, 118(6): 3062–3068.

    Article  CAS  Google Scholar 

  • Basagiannis, A.C. and Verykios, X.E. (2006). Reforming reactions of acetic acid on nickel catalysts over a wide temperature range. Appl. Catal. A: Gen, 308: 182–193.

    Article  CAS  Google Scholar 

  • Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A, 38(6): 3098–3100.

    Article  CAS  Google Scholar 

  • Cao, J., Zhu, Y., Bao, K., Shi, L., Liu, S. and Qian, Y. (2009). Microscale Mn2O3 Hollow Structures: Sphere, Cube, Ellipsoid, Dumbbell, and Their Phenol Adsorption Properties. J. Phys. Chem. C, 113(41): 1775517760.

    Article  CAS  Google Scholar 

  • Chen, R.Z., Du, Y., Chen, C.L., Xing, W.H., Xu, N.P., Chen, C.X. and Zhang, Z.L. (2003). Comparative study on catalytic activity and stability of nano-sized nickel and raney nickel. J. Chem. Ind. Eng. (China), 54(5): 704–706.

    Google Scholar 

  • Choudhary, V.R., Uphade, B.S. and Mamman, A.S. (1997). Oxidative Conversion of Methane to Syn gas over Nickel Supported on Commercial Low Surface Area Porous Catalyst Carriers Precoated with Alkaline and Rare Earth Oxides. J. Catal., 172(2): 281–293.

    Article  CAS  Google Scholar 

  • Deka, P., Deka, R.C. and Bharali, P. (2014). In-situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J. Chem., 38: 1789–1793.

    Article  CAS  Google Scholar 

  • Du, Y., Chen, H.L., Chen, R.Z. and Xu, N.P. (2004). Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Appl. Catal. A: Gen, 277(1–2): 259–264.

    Article  CAS  Google Scholar 

  • Esumi, K., Isono, R. and Yoshimura, T. (2004). Preparation of PAMAM- and PPI-Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir, 20(1): 237–243.

    Article  CAS  Google Scholar 

  • Frisch, M.J. et al. (2009). Gaussian 09: Revision B. 01. Gaussian, Pittsburgh, PA.

    Google Scholar 

  • Jiang, Z., Xie, J., Jiang, D., Jing, J. and Qin, H. (2012). Facile Route Fabrication of Nano-Ni Core Mesoporous-Silica Shell Particles with High Catalytic Activity towards 4-Nitrophenol Reduction. Cryst. Eng. Comm., 14: 46014611.

    Article  CAS  Google Scholar 

  • Jin, Z., Xiao, M., Bao, Z., Wang, P. and Wang, J. (2012). A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles. Angew. Chem. Int. Ed., 51(26): 6406–6410.

    Article  CAS  Google Scholar 

  • Ju, K.S. and Parales, R.E. (2010). Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiol. Mol. Biol. Rev., 74(2): 250–272.

    Article  CAS  Google Scholar 

  • Labana, S., Pandey, G., Paul, D., Sharma, N.K., Basu, A. and Jain, R.K. (2005). Pot and Field Studies on Bioremediation of p-Nitrophenol Contaminated Soil Using Arthrobacterprotophormiae RKJ100. Environ. Sci. Technol., 39(9): 3330–3337.

    Article  CAS  Google Scholar 

  • Lee, C.,Yang, W. and Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37(2): 785–789.

    Article  CAS  Google Scholar 

  • Li, H., Jo, J.K., Zhang, L., Ha, C.-S., Suh, H. and Kim, I. (2010). A General and Efficient Route to Fabricate CarbonNanotube-Metal Nanoparticles and Carbon Nanotube-Inorganic Oxides Hybrids. Adv. Funct. Mater., 20: 38643873.

    Article  CAS  Google Scholar 

  • Lu, H., Yin, H., Liu, Y., Jiang, T. and Yu, L. (2008). Influence of support on catalytic activity of Ni catalysts in p-nitrophenol hydrogenation to p-aminophenol. Catal. Commun., 10(3): 313–316.

    Article  CAS  Google Scholar 

  • Lu, Y., Xue, J., Yu, C., Liu, Y. and Shen, S. (1998). Mechanistic investigations on the partial oxidation of methane to synthesis gas over a nickel-on-alumina catalyst. Appl. Catal. A: Gen, 174(1–2): 121–128.

    Article  CAS  Google Scholar 

  • Miertus, S., Scrocco, E. and Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., 55(1): 117–129.

    Article  CAS  Google Scholar 

  • Mori, K., Kumami, A., Tomonari, M. and Yamashita, H. (2009). A pH-Induced Size Controlled Deposition of Colloidal Ag Nanoparticles on Alumina Support for Catalytic Application. J. Phys. Chem. C, 113(39): 16850–16854.

    Article  CAS  Google Scholar 

  • Podeh, M.R.H., Bhattacharya, S.K. and Qu, M. (1995). Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res., 29(2): 391–399.

    Article  CAS  Google Scholar 

  • Pozun, Z.D., Rodenbusch, S.E., Keller, E., Tran, K., Tang, W., Stevenson, K.J. and Henkelman, G. (2013). A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. J. Phys. Chem. C, 117: 7598–7604.

    Article  CAS  Google Scholar 

  • Sarkar, S., Sinha, A.K., Pradhan, M., Basu, M., Negishi, Y. and Pal, T. (2011). Redox Transmetalation of Prickly Nickel Nanowires for Morphology Controlled Hierarchical Synthesis of Nickel/Gold Nanostructures for Enhanced Catalytic Activity and SERS Responsive Functional Material. J. Phys. Chem. C, 115: 1659–1673.

    Article  CAS  Google Scholar 

  • Saha, S., Pal, A., Kundu, S., Basu, S. and Pal, T. (2010). Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir, 26(4): 2885–2893.

    Article  CAS  Google Scholar 

  • Shin, K.S., Choi, J.Y., Park, C.S., Jang, H.J. and Kim, K. (2009). Facile Synthesis and Catalytic Application of Silver-Deposited Magnetic Nanoparticles. Catal. Lett., 133(1–2): 1–7.

    Article  CAS  Google Scholar 

  • Tomei, M.C., Annesini, M.C., Rita, S. and Daugulis, A.J. (2010). Two-Phase Partitioning Bioreactors Operating with Polymers Applied to the Removal of Substituted Phenols. Environ. Sci. Technol., 44(19): 7254–7259.

    Article  CAS  Google Scholar 

  • Wang, J.G., Liu, C.J., Zhang, Y.P., Yu, K.L., Zhu, X.L. and He, F. (2004). Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst. Catal. Today, 89(1–2): 183–191.

    Article  CAS  Google Scholar 

  • Wu, K.-L., Wei, X.-W., Zhou, X.-M., Wu, D.-H., Liu, X.-W., Ye, Y. and Wang, Q. (2011). NiCo2 Alloys: Controllable Synthesis, Magnetic Properties, and Catalytic Applications in Reduction of 4-Nitrophenol. J. Phys. Chem. C, 115: 16268–16274.

    Article  CAS  Google Scholar 

  • Wu, K.-L., Yu, R. and Wei, X.-W. (2012a). Monodispersed FeNi2 Alloy Nanostructures: Solvothermal Synthesis, Magnetic Properties and Size-Dependent Catalytic Activity. Cryst. Eng. Comm., 14: 7626–7632.

    Article  CAS  Google Scholar 

  • Wu, Z., Chen, J., Di, Q. and Zhang, M. (2012b). Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol. Catal. Commun., 18: 55–59.

    Google Scholar 

  • Yang, Y., Ren, Y., Sun, C. and Hao, S. (2014). Facile Route Fabrication of Nickel based Mesoporous Carbons with High Catalytic Performance towards 4-Nitrophenol Reduction. Green Chem., 16: 2273–2280.

    Article  CAS  Google Scholar 

  • Yi, S., Zhuang, W.Q., Wu, B., Tay, S.T.L. and Tay, J.H. (2006). Biodegradation of p-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor. Environ. Sci. Technol., 40(7): 2396–2401.

    Article  CAS  Google Scholar 

  • Zhang, Z., Shao, C., Zou, P., Zhang, P., Zhang, M., Mu, J., Guo, Z., Li, X., Wang, C. and Liu, Y. (2011). In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chem. Commun., 47: 3906–3908.

    Article  CAS  Google Scholar 

  • Zieris, F.J., Feind, D. and Huber, W. (1988). Long-term effects of 4-nitrophenol in an outdoor synthetic aquatic ecosystem. Arch. Environ. Contam. Toxicol., 17(2): 165–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Tezpur University as research grant to PB. DB thanks CSIR, New Delhi for senior research fellowship. Authors also acknowledge the financial support from Department of Science and Technology, New Delhi. SAIF, North-Eastern Hill University, India and SAIC, Tezpur University, India are acknowledged for analytical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Bharali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Capital Publishing Company, New Delhi, India

About this chapter

Cite this chapter

Deka, P., Bhattacharjee, D., Sarmah, P., Deka, R.C., Bharali, P. (2017). Catalytic Reduction of Water Contaminant ‘4-Nitrophenol’ over Manganese Oxide Supported Ni Nanoparticles. In: Kurisu, F., Ramanathan, A., Kazmi, A., Kumar, M. (eds) Trends in Asian Water Environmental Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-39259-2_3

Download citation

Publish with us

Policies and ethics