Skip to main content
Log in

Texture evolution during skew cold rolling and annealing of a non-oriented electrical steel containing 0.9 wt% silicon

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel rolling technique, i.e., skew rolling, was applied to a non-oriented electrical steel containing 0.9 wt% Si, aiming at altering the texture of the final sheets that usually contain the magnetically unfavorable <111>//ND fiber after conventional rolling and annealing. The texture after skew cold rolling was compared to those obtained from conventional rolling and cross rolling and significantly different textures were observed. The cold-rolled steel sheets were then annealed and the texture evolution was investigated using a quasi in situ electron backscatter diffraction technique, i.e., tracking the microtexture of the same area at various holding times at the same temperature. The development of the recrystallization microstructure and microtexture (nucleation and grain growth) was characterized and the effect of skew rolling on the final texture was studied. The mechanisms governing the formation of the final recrystallization texture, e.g., preferential nucleation and selective growth, were elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Kestens L, Jacobs S (2008) Texture control during the manufacturing of nonoriented electrical steels. Texture Stress Microstruct 2008:1–9. doi:10.1155/2008/173083

    Article  Google Scholar 

  2. Landgraf FJG (2012) Nonoriented electrical steels. JOM 64(7):764–771. doi:10.1007/s11837-012-0356-7

    Article  Google Scholar 

  3. Hou CK, Liao CC (2008) Effect of cerium content on the magnetic properties of non-oriented electrical steels. ISIJ Int 48(4):531–539. doi:10.2355/isijinternational.48.531

    Article  Google Scholar 

  4. Oda Y, Toda H, Shiga N, Kasai S, Hiratani T (2014) Effect of Si content on iron loss of electrical steel sheet under compressive stress. IEEE Trans Magn 50(4):1–4. doi:10.1109/TMAG.2013.2290321

    Article  Google Scholar 

  5. Nakayama T, Tanaka T (1997) Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci 32(4):1055–1059. doi:10.1023/a:1018590725223

    Article  Google Scholar 

  6. Chang SK (2006) Effects of Co, Mo, and Ni on magnetic properties in 3Si–0.1Sn–0.08Sb alloyed non-oriented electrical steels. J Mater Sci 41(22):7380–7386. doi:10.1007/s10853-006-0805-1

    Article  Google Scholar 

  7. Barros J, Schneider J, Verbeken K, Houbaert Y (2008) On the correlation between microstructure and magnetic losses in electrical steel. J Magn Magn Mater 320(20):2490–2493. doi:10.1016/j.jmmm.2008.04.056

    Article  Google Scholar 

  8. Shiozaki M, Kurosaki Y (1989) The effects of grain size on the magnetic properties of nonoriented electrical steel sheets. J Mater Eng 11(1):37–43. doi:10.1007/BF02833752

    Article  Google Scholar 

  9. Pan H, Zhang Z, Xie J (2016) The effects of recrystallization texture and grain size on magnetic properties of 6.5 wt% Si electrical steel. J Magn Magn Mater 401:625–632. doi:10.1016/j.jmmm.2015.10.047

    Article  Google Scholar 

  10. Moses AJ, Thursby GJ (1983) Improvement of magnetic properties of electrical steels using a surface diffusion technique. J Mater Sci 18(6):1657–1665. doi:10.1007/bf00542060

    Article  Google Scholar 

  11. Cullity B, Graham C (2009) Ferrimagnetism. Introduction to magnetic materials, 2nd edn, Wiley, New York pp 175–195

  12. Matsumura K, Fukuda B (1984) Recent developments of non-oriented electrical steel sheets. IEEE Trans Magn 20(5):1533–1538

    Article  Google Scholar 

  13. Tomida T, Sano N, Ueda K, Fujiwara K, Takahashi N (2003) Cube-textured Si-steel sheets by oxide-separator-induced decarburization and growth mechanism of cube grains. J Magn Magn Mater 254–255:315–317. doi:10.1016/S0304-8853(02)00810-7

    Article  Google Scholar 

  14. Equihua-Guillén F, Salinas-Rodríguez A (2011) Role of the austenite-ferrite transformation start temperature on the high-temperature ductility of electrical steels. J Mater Eng Perform 20(1):102–107. doi:10.1007/s11665-010-9643-z

    Article  Google Scholar 

  15. Liu H-T, Liu Z-Y, Sun Y, Gao F, Wang G-D (2013) Development of λ-fiber recrystallization texture and magnetic property in Fe–6.5 wt% Si thin sheet produced by strip casting and warm rolling method. Mater Lett 91:150–153. doi:10.1016/j.matlet.2012.09.046

    Article  Google Scholar 

  16. Hayakawa Y, Kurosawa M (2002) Orientation relationship between primary and secondary recrystallized texture in electrical steel. Acta Mater 50(18):4527–4534. doi:10.1016/S1359-6454(02)00271-9

    Article  Google Scholar 

  17. Kestens L, Jonas J, Van Houtte P, Aernoudt E (1996) Orientation selection during static recrystallization of cross rolled non-oriented electrical steels. Textures Microstruct 27(1):321–336

    Article  Google Scholar 

  18. Sanjari M, He Y, Hilinski EJ, Yue S, Kestens LAI (2016) Development of the {113} 〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scripta Mater 124:179–183. doi:10.1016/j.scriptamat.2016.07.005

    Article  Google Scholar 

  19. He Y, Hilinski E (2016) Skew rolling and its effect on the deformation textures of non-oriented electrical steels. J Mater Process Tech (in press)

  20. Park J-T, Szpunar JA (2003) Evolution of recrystallization texture in nonoriented electrical steels. Acta Mater 51(11):3037–3051. doi:10.1016/S1359-6454(03)00115-0

    Article  Google Scholar 

  21. Pedrosa JSM, Paolinelli SdC, Cota André B (2015) Influence of initial annealing on structure evolution and magnetic properties of 3.4% Si non-oriented steel during final annealing. J Magn Magn Mater 393:146–150. doi:10.1016/j.jmmm.2015.05.058

    Article  Google Scholar 

  22. Li H-Z, Liu Z-Y, Wang X-L, Ren H-M, Li C-G, Cao G-M, Wang G-D (2017) \left\{114 \right\} \langle 4\overline{8} 1\rangle $$ 114 〈4 8 ¯ 1〉 Annealing texture in twin-roll casting non-oriented 6.5 wt% Si electrical steel. J Mater Sci 52(1):247–259. doi:10.1007/s10853-016-0327-4

    Article  Google Scholar 

  23. Mishra S, Därmann C, Lücke K (1984) On the development of the goss texture in iron-3% silicon. Acta Metall 32(12):2185–2201. doi:10.1016/0001-6160(84)90161-5

    Article  Google Scholar 

  24. Doherty RD (1985) Nucleation and growth kinetics of different recrystallization texture components. Scr Metall 19(8):927–930. doi:10.1016/0036-9748(85)90284-4

    Article  Google Scholar 

  25. Sebald R, Gottstein G (2002) Modeling of recrystallization textures: interaction of nucleation and growth. Acta Mater 50(6):1587–1598. doi:10.1016/S1359-6454(02)00020-4

    Article  Google Scholar 

  26. Rollett A, Humphreys F, Rohrer GS, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, oxford

    Google Scholar 

  27. Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX–free and open source software toolbox. Solid state phenomena. Trans Tech Publications, Zurich-Durnten, pp 63–68

    Google Scholar 

  28. Nguyen-Minh T, Sidor JJ, Petrov RH, Kestens LAI (2012) Occurrence of shear bands in rotated Goss ({1 1 0}〈1 1 0〉) orientations of metals with bcc crystal structure. Scr Mater 67(12):935–938. doi:10.1016/j.scriptamat.2012.08.017

    Article  Google Scholar 

  29. Quadir MZ, Duggan BJ (2006) A microstructural study of the origins of γ recrystallization textures in 75% warm rolled IF steel. Acta Mater 54(16):4337–4350. doi:10.1016/j.actamat.2006.05.026

    Article  Google Scholar 

  30. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238(2):219–274. doi:10.1016/S0921-5093(97)00424-3

    Article  Google Scholar 

  31. Jonas J, Kestens L (2005) Transformation and recrystallization textures associated with steel processing. ASM Handbook 14A, vol 14. ASM International, Russell Township, pp 685–700

    Google Scholar 

  32. He Y, Hilinski E, Li J (2015) Texture evolution of a non-oriented electrical steel cold rolled at directions different from the hot rolling direction. Metall Mater Trans A 46(11):5350–5365

    Article  Google Scholar 

  33. Aernoudt E, Houtte PV, Leffers T (2006) Deformation and textures of metals at large strain. Mater Sci Technol. doi:10.1002/9783527603978.mst0050

    Google Scholar 

  34. Tóth LS, Jonas JJ, Daniel D, Ray RK (1990) Development of ferrite rolling textures in low- and extra low-carbon steels. Metall Trans A 21(11):2985–3000. doi:10.1007/bf02647219

    Article  Google Scholar 

  35. Xu W, Ferry M (2010) Recrystallisation textures in cold rolled low carbon steel containing ferritic and bainitic microstructures. Mater Sci Technol 26(10):1159–1172

    Article  Google Scholar 

  36. Sidor JJ, Verbeken K, Gomes E, Schneider J, Calvillo PR, Kestens LAI (2012) Through process texture evolution and magnetic properties of high Si non-oriented electrical steels. Mater Charact 71:49–57. doi:10.1016/j.matchar.2012.06.006

    Article  Google Scholar 

  37. Park JT, Szpunar JA (2005) Texture development during grain growth in nonoriented electrical steels. ISIJ Int 45(5):743–749. doi:10.2355/isijinternational.45.743

    Article  Google Scholar 

  38. Sanjari M, Farzadfar SF, Sakai T, Utsunomiya H, Essadiqi E, Jung I-H, Yue S (2013) Microstructure and texture evolution of Mg3Zn3Ce magnesium alloys sheets and associated restoration mechanisms during annealing. Mater Sci Eng A 561:191–202. doi:10.1016/j.msea.2012.10.075

    Article  Google Scholar 

  39. Agnew SR, Yoo MH, Tomé CN (2001) Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater 49(20):4277–4289. doi:10.1016/s1359-6454(01)00297-x

    Article  Google Scholar 

  40. Sha YH, Sun C, Zhang F, Patel D, Chen X, Kalidindi SR, Zuo L (2014) Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater 76:106–117. doi:10.1016/j.actamat.2014.05.020

    Article  Google Scholar 

  41. Murakami K, Morishige N, Ushioda K (2012) The effect of cold rolling reduction on shear band and texture formation in Fe-3% Si alloy. Materials science forum. Trans Tech Publications, Zurich-Durnten, pp 158–163

    Google Scholar 

  42. Liu H-T, Li H-Z, Li H-L, Gao F, Liu G-H, Luo Z-H, Zhang F-Q, Chen S-L, Cao G-M, Liu Z-Y, Wang G-D (2015) Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel. J Magn Magn Mater 391:65–74. doi:10.1016/j.jmmm.2015.04.105

    Article  Google Scholar 

  43. Dorner D, Zaefferer S, Raabe D (2007) Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal. Acta Mater 55(7):2519–2530. doi:10.1016/j.actamat.2006.11.048

    Article  Google Scholar 

  44. Ushioda K, Nakanishi S, Morikawa T, Higashida K, Suwa Y, Murakami K (2013) Evolution of heterogeneous deformation structure and recrystallization texture of steel. Materials science forum. Trans Tech Publication, Zurich-Durnten, pp 58–65

    Google Scholar 

  45. Duggan BJ, Roberts WT (1975) Recrystallization textures in an iron-1. 2% copper alloy. Met Sci J 9(10):449–454

    Article  Google Scholar 

  46. Gobernado P, Petrov RH, Kestens LAI (2012) Recrystallized {3 1 1} 〈1 3 6〉 orientation in ferrite steels. Scr Mater 66(9):623–626. doi:10.1016/j.scriptamat.2012.01.056

    Article  Google Scholar 

  47. Verbeken K, Kestens L, Jonas JJ (2003) Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel. Scr Mater 48(10):1457–1462. doi:10.1016/S1359-6462(03)00078-2

    Article  Google Scholar 

  48. Verbeken K, Kestens L (2003) Strain-induced selective growth in an ultra low carbon steel after a small rolling reduction. Acta Mater 51(6):1679–1690. doi:10.1016/S1359-6454(02)00569-4

    Article  Google Scholar 

  49. Nakamura S, Homma H (2004) Micro-scale OIM study on the recrystallization process of cold rolled α-fiber single crystal. Mater Sci Forum 467:159–164

    Article  Google Scholar 

  50. Gobernado P, Petrov R, Ruiz D, Leunis E, Kestens LAI (2010) Texture evolution in Si-alloyed ultra low-carbon steels after severe plastic deformation. Adv Eng Mater 12(10):1077–1081. doi:10.1002/adem.201000075

    Article  Google Scholar 

  51. Verbeken K, Kestens L, Nave MD (2005) Re-evaluation of the Ibe-Lücke growth selection experiment in a Fe–Si single crystal. Acta Mater 53(9):2675–2682. doi:10.1016/j.actamat.2005.02.030

    Article  Google Scholar 

  52. Song XL, Peng K, Zhang PP, Wu JY, Zhou J, Jia J, Fan LX (2013) Effect of phosphorus contents on texture and grain boundary character for the annealing high strength Ti-IF steels. Adv Mater Res 652–654:929–933. doi:10.4028/www.scientific.net/AMR.652-654.929

    Article  Google Scholar 

  53. Zhang ZW, Wang WH, Zou Y, Baker I, Chen D, Liang YF (2015) Control of grain boundary character distribution and its effects on the deformation of Fe–6.5 wt% Si. J Alloy Compd 639:40–44. doi:10.1016/j.jallcom.2015.03.129

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by Natural Resources Canada through the Program of Energy Research and Development. United States Steel Corporation Research and Technology Center (Munhall, PA) is gratefully acknowledged for melting, hot rolling and hot band annealing of the steel plates. The authors are grateful to Michael Attard, Darren Bibby, Raul Santos, Renata Zavadil, Jian Li and Pei Liu for their contributions to this project. Dr. Mark Kozdras is thanked for his careful review on the manuscript. Peter Badgley from the United States Steel Corporation Canada (Hamilton, ON) is gratefully acknowledged for coordinating this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjari, M., He, Y., Hilinski, E.J. et al. Texture evolution during skew cold rolling and annealing of a non-oriented electrical steel containing 0.9 wt% silicon. J Mater Sci 52, 3281–3300 (2017). https://doi.org/10.1007/s10853-016-0616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0616-y

Keywords

Navigation