Skip to main content
Log in

Texture Evolution of a Non-oriented Electrical Steel Cold Rolled at Directions Different from the Hot Rolling Direction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With the objective of optimizing the crystallographic texture of non-oriented electrical steel, i.e., reducing the 〈111〉//ND and 〈110〉//RD fibers and promoting the 〈001〉//ND texture, a new rolling scheme was proposed and tested, in which the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) in order to change the orientation flow paths during cold rolling and alter the final texture of the annealed sheets. A non-oriented electrical steel containing 0.88 wt pct Si was hot rolled using conventional routes and annealed, and a number of rectangular plates were cut from the hot band with the longitudinal directions inclined at various angles, i.e., 0, 15, 30, 45, 60, 75, and 90 deg, to the HRD. These plates were then cold rolled along the longitudinal directions with a thickness reduction of 72 pct. The cold-rolled samples were annealed, temper rolled and annealed again (final annealing). The texture evolution during hot rolling, hot band annealing, cold rolling, and final annealing was characterized by electron backscatter diffraction and X-ray diffraction techniques. By changing the CRD with respect to the HRD, the initial texture and the orientation flow paths were altered, which resulted in apparent differences in the textures as compared to conventional cold rolling. After temper rolling and final annealing, the recrystallization textures consisted of mainly a 〈001〉//ND fiber and there was almost no 〈111〉//ND fiber. The sample cold rolled at an angle of 60 deg to the HRD had the strongest texture (intensity almost 2× of conventional rolling) with a maximum at the cube {001}〈100〉 orientation—a magnetically favorable orientation for non-oriented electrical steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.J.G. Landgraf: JOM, 2012, vol. 64, pp. 764-71.

    Article  Google Scholar 

  2. M. Getzlaff: Fundamentals of Magnetism, Springer, Berlin, 2008.

    Google Scholar 

  3. T. Tomida, S. Uenoya and N. Sano: Mater. Trans., 2003, vol. 44, pp. 1106-15.

    Article  Google Scholar 

  4. Kestens L, Jonas JJ (2005) ASM Handbook, vol. 14, Part 1. ASM International, Materials Park, pp 685-700.

    Google Scholar 

  5. W.C. Jeong: Mater. Lett., 2008, vol. 62, pp. 91-94.

    Article  Google Scholar 

  6. B. Hutchinson, L. Ryde and K. Tagashira: Mater. Sci. Eng., A, 1998, vol. A257, pp. 9-17.

    Article  Google Scholar 

  7. J.J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P.R. Calvillo and L.A.I. Kestens: Mater. Charact., 2012, vol. 71, pp. 49-57.

    Article  Google Scholar 

  8. H. Yashiki and T. Kaneko: J. Magn. Magn. Mater., 1992, vol. 112, pp. 200-202.

    Article  Google Scholar 

  9. O. Fischer and J. Schneider: J. Magn. Magn. Mater., 2003, vol. 254-255, pp. 302-306.

    Article  Google Scholar 

  10. S. Akta, G.J. Richardson and C.M. Sellars: ISIJ Int., 2005, vol. 45, pp. 1666-75.

    Article  Google Scholar 

  11. M. Takashima, M. Komatsubara, and N. Morito: ISIJ Int., 1997, vol. 37, pp. 1263-68.

    Article  Google Scholar 

  12. E.J. Gutierrez-Castaneda and A. Salinas-Rodriguez: J. Magn. Magn. Mater. 2011, vol. 323, pp. 2524-30.

    Article  Google Scholar 

  13. J. Park, J.A. Szpunar and S.Y. Cha: ISIJ Int., 2003, vol. 43, pp. 1611-14.

    Article  Google Scholar 

  14. Y. Sidor, F. Kovac and T. Kvackaj: Acta Mater. 2007, vol. 55, pp. 1711-22.

    Article  Google Scholar 

  15. T. Tomida and T. Tanaka: ISIJ Int., 1995, vol. 35, pp. 548-56.

    Article  Google Scholar 

  16. T. Nakayama, N. Honjou, T. Minaga and H. Yashiki: J. Magn. Magn. Mater., 2001, vol. 234, pp. 55-61.

    Article  Google Scholar 

  17. M. de Campos, F.J.G. Landgraf, I.G.S. Falleiros and G.C. Fronzaglia: ISIJ Int., 2004, vol. 44, pp. 1733-37.

    Article  Google Scholar 

  18. M.A. da Cunha and S.C. Paolinelli: Mater. Res., 2002, vol. 5, pp. 373-78.

    Article  Google Scholar 

  19. L. Kestens and S. Jacobs: Texture Stress Microstruct., vol. 2008, Article ID: 173083, pp. 1-9.

    Article  Google Scholar 

  20. Y. Hayakawa and M. Kurosawa: Acta Mater., 2002, vol. 50, pp. 4527-34.

    Article  Google Scholar 

  21. Vander Voort GF (1999) Metallography Principles and Practice. ASM International, Materials Park, pp 447-53.

    Google Scholar 

  22. R. Hielscher and H. Schaeben: J. Appl. Crystallogr., 2008, vol. 41, pp. 1024-37.

    Article  Google Scholar 

  23. J. Hunady, M. Cernik, E.J. Hilinski, M. Predmersky and A. Magurova: J. Magn. Magn. Mater., 2006, vol. 304, pp. e620-23.

    Article  Google Scholar 

  24. A.D. Rollett and S.I. Wright: Typical Textures in Metals, Cambridge University Press, Cambridge, 1998, pp. 179-237.

    Google Scholar 

  25. E. Aernoudt, P. Van Houtte and T. Leffers: Deformation and Textures of Metals at Large Strain, John Wiley & Sons Canada Ltd., Toronto, 1992, pp. 89-136.

    Google Scholar 

  26. L.S. Toth, J.J. Jonas, D. Daniel and R.K. Ray: Metall. Trans. A, 1990, vol. 21A, pp. 2985-3000.

    Article  Google Scholar 

  27. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd, Oxford, 2004.

    Google Scholar 

  28. S.K. Chang and W.Y. Huang: ISIJ Int., 2005, vol. 45, pp. 918-22.

    Article  Google Scholar 

  29. I.L. Dillamore and W.T. Roberts: Metall. Rev., 1965, vol. 10, pp. 271-380.

    Google Scholar 

  30. C.G. Dunn and J.L. Walter: Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 518-33.

    Google Scholar 

  31. N. Zhang, P. Yang, and W.M. Mao: Mater. Lett., 2013, vol. 93, pp. 363-65.

    Article  Google Scholar 

  32. F. Kovac, M. Dzubinsky, and Y. Sidor: J. Magn. Magn. Mater., 2004, vol. 269, pp. 333-40.

    Article  Google Scholar 

  33. T. Tomida: J. Appl. Phys., 1996, vol. 79, pp. 5443-45.

    Article  Google Scholar 

  34. Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi and L. Zuo: Acta Mater., 2014, vol. 76, pp. 106-17.

    Article  Google Scholar 

  35. P.K. Koh and G.C. Dunn: Trans. Met. Soc. AIME, 1955, vol. 203, pp. 401-405.

    Google Scholar 

  36. T. Taoka, E. Furubayashi and S. Takeuchi: Trans. Iron Steel Inst. Jpn., 1966, vol. 6, pp. 201-32.

    Google Scholar 

  37. H. Inagaki and T. Suda: Texture, 1972, vol. 1, pp. 129-40.

    Article  Google Scholar 

  38. R. G. Aspden: Trans. Met. Soc. AIME, 1959, vol. 215, pp. 986-91.

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Natural Resources Canada through the Program of Energy Research and Development (ecoEII ETRI011). United States Steel Corporation Research and Technology Center (Munhall, PA) is gratefully acknowledged for melting, hot rolling, and hot band annealing the steel plates. The authors are grateful to Michael Attard, Darren Bibby, Raul Santos, Renata Zavadil and Pei Liu for their contributions to this project. Peter Badgley from the United States Steel Corporation Canada (Hamilton, ON) is gratefully acknowledged for coordinating this research. Victoria Jarvis, McMaster Analytical X-ray Diffraction Facility, McMaster University, is thanked for the XRD texture measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Hilinski, E. & Li, J. Texture Evolution of a Non-oriented Electrical Steel Cold Rolled at Directions Different from the Hot Rolling Direction. Metall Mater Trans A 46, 5350–5365 (2015). https://doi.org/10.1007/s11661-015-3136-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3136-5

Keywords

Navigation