Skip to main content

Advertisement

Log in

Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The increased frequency of heat waves due to climate change poses a threat to all organisms. Microalgae are the basis of aquatic food webs, and high temperatures have significant impacts on their adaptation and survival rates. Algae respond to environmental changes by modulating their photosynthetic rates and biochemical composition. This study aims to examine the effect of elevated temperature on similar taxa of marine Chlorella originating from different latitudes. Strains from the Antarctic, temperate zone, and the tropics were grown at various temperatures, ranging from 4 to 38, 18 to 38, and 28 to 40 °C, respectively. A pulse-amplitude modulated (PAM) fluorometer was used to assess their photosynthetic responses. Parameters including maximum quantum efficiency (F v/F m), relative electron transport rate (rETR), and light harvesting efficiency (α) were determined from the rapid light curves (RLCs). In addition, the composition of fatty acids was compared to evaluate changes induced by the temperature treatments. Increasing the temperature from 35 to 38 °C for both Antarctic and temperate strains and from 38 to 40 °C for the tropical strain resulted in severe inhibition of photosynthesis and suppressed growth. Although all the strains demonstrated the ability to recover from different stress levels, the tropical strain was able to recover most rapidly while the Antarctic strain had the slowest recovery. The results underline that the thermal threshold for the analysed Chlorella strains temperature ranges between 38 and 40 °C. Furthermore, the analysed strains exhibited different trends in their response to elevated temperatures and recovery capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49:177–190

    Article  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Behera RK, Choudhury NK (2003) High irradiance-induced changes in carotenoid composition and increase in non-photochemical quenching of Chl a fluorescence in primary wheat leaves. J Plant Physiol 160:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • BenMoussa-Dahmen I, Chtourou H, Rezgui F, Sayadi S, Dhouib A (2016) Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresour Technol 218:816–825

    Article  CAS  PubMed  Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597

    Article  CAS  PubMed  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher-plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Broady PA, Smith RA (1994) A preliminary investigation of the diversity, survivability and dispersal of algae into Antarctica by human activity. Proceedings of the National Institute of Polar Research (NIPR) Symposium on Polar Biology 7:185–197

    Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plantarum 108:111–117

    Article  CAS  Google Scholar 

  • Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468

    Article  CAS  Google Scholar 

  • Cao K, He M, Yang W, Chen B, Luo W, Zou S, Wang C (2016) The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. J Appl Phycol 28:877–888

    Article  CAS  Google Scholar 

  • Cardozo KH, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78

    Article  Google Scholar 

  • Chen Z, He C, Hu H (2012) Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichooccus. Extremophiles 16:127–133

    Article  CAS  PubMed  Google Scholar 

  • Chapman RL (2013) Algae: the world’s most important “plants”—an introduction. Mitig Adapt Strat Global Change 18:5–12

    Article  Google Scholar 

  • Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11

    Article  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Endres CH, Roth A, Brück TB (2016) Thermal reactor model for large-scale algae cultivation in vertical flat panel photobioreactors. Environ Sci Technol 50:3920–3927

    Article  CAS  PubMed  Google Scholar 

  • Fanciullino AL, Bidel LPR, Urban L (2014) Carotenoid responses to environmental stimuli: integrating redox and carbon controls into a fruit model. Plant Cell Environ 37:273–289

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2013) Aquatic photosynthesis. Blackwell Scientific Publishers, Oxford, 375 pp

    Book  Google Scholar 

  • Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plantarum 92:696–717

    Article  CAS  Google Scholar 

  • Fujimoto N, Inamori Y, Sugiura N, Sudo R (1994) Effects of temperature-change on algal growth. Environ Technol 15:497–500

    Article  Google Scholar 

  • Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30:1240–1255

    Article  CAS  PubMed  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendry G, Price A (eds) (1993) Stress indicators: chlorophylls and carotenoids. Methods in comparative plant ecology. Chapman & Hall, London, pp 148–152

    Google Scholar 

  • Hodaifa G, Eugenia Martinez M, Sanchez S (2010) Influence of temperature on growth of Scenedesmus obliquus in diluted olive mill wastewater as culture medium. Eng Life Sci 10:257–264

    Article  CAS  Google Scholar 

  • Horvath I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220

    Article  CAS  PubMed  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. Progress in the chemistry of fats and other lipids 2:51–98

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. USA: Cambridge University Press, 1–27.

  • Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Oil Chem Soc 77:613–617

    Article  CAS  Google Scholar 

  • Jueterbock A, Kollias S, Smolina I, Fernandes JMO, Coyer JA, Olsen JL, Hoarau G (2014) Thermal stress resistance of the brown alga Fucus serratus along the North-Atlantic coast: acclimatization potential to climate change. Mar Genomics 13:27–36

    Article  PubMed  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  • Kessler E (1985) Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Syst Evol 151:67–71

    Article  Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohrs T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. Nov (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542

    Article  Google Scholar 

  • Krienitz L, Huss VA, Bock C (2015) Chlorella: 125 years of the green survivalist. Trends Plant Sci 20:67–69

    Article  CAS  PubMed  Google Scholar 

  • Lee T-C, Hsu B-D (2013) Characterization of the decline and recovery of heat-treated Scenedesmus vacuolatus. Bot Stud 54:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Leggat W, Whitney S, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37:137–153

    CAS  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J Photochem Photobiol B 82:161–172

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116:489–509

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Zhu Z, Zhu Z, Yang R, Qian F, Chen H, Yan X (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9(4):e94354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma XC, Zheng HL, Huang H, Liu YH, Ruan R (2014) Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Appl Biochem Biotech 174:1631–1650

    Article  CAS  Google Scholar 

  • MacIntyre HL, Sharkey TD, Geider RJ (1997) Activation and deactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in three marine microalgae. Photosynth Res 51:93–106

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Meiners KM, Papadimitriou S, Thomas DN, Norman L, Dieckmann GS (2009) Biogeochemical conditions and ice algal photosynthetic parameters in Weddell Sea ice during early spring. Polar Biol 32:1055–1065

    Article  Google Scholar 

  • Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741

    Article  CAS  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Higashi S, Fujimura Y (1990) Glycerolipids in various preparations of photosystem-II from spinach-chloroplasts. Biochim Biophys Acta 1019:261–268

    Article  CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murkowski A (2001) Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biol Plant 44:53–57

    Article  CAS  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotech 98:8777–8796

    Article  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    Article  CAS  PubMed  Google Scholar 

  • Öquist G (1983) Effects of low temperature on photosynthesis. Plant Cell Environ 6:281–300

    Google Scholar 

  • Olofsson M, Lamela T, Nilsson E, Berge JP, del Pino V, Uronen P, Legrand C (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592

    Article  CAS  Google Scholar 

  • Pereira WE, de Siqueira DL, Martinez CA, Puiatti M (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157:513–520

    Article  CAS  Google Scholar 

  • Phang SM, Chu WL (1999) University of Malaya Algae Culture Collection (UMACC). Catalogue of strains. Institute of Postgraduate Studies and Research, Kuala Lumpur, p 77

  • Phang SM, Chu WL (2004) The University of Malaya Algae Culture Collection (UMACC) and potential applications of a unique Chlorella from the collection. Jap J Phycol 52:221–224

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine-phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Pick U, Gounaris K, Weiss M, Barber J (1985) Tightly bound sulpholipids in chloroplast CF0-CF1. Biochim Biophys Acta Bioenerg 808:415–420

    Article  CAS  Google Scholar 

  • Pintó-Marijuan M, Munné-Bosch S (2014) Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. J Exp Bot 65:3845–3857

    Article  PubMed  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Ras M, Steyer J-P, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Bio 12:153–164

    Article  CAS  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

  • Reeves S, McMinn A, Martin A (2011) The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol 34:1019–1032

    Article  Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • Sankar V, Daniel DK, Krastanov A (2011) Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnol Biotech Equip 25:2468–2476

    Article  CAS  Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    Article  CAS  PubMed  Google Scholar 

  • Salleh S, McMinn A (2011) The effects of temperature on the photosynthetic parameters and recovery of two temperate benthic microalgae, Amphora cf. coffeaeformis and Cocconeis cf. sublittoralis (Bacillariophyceae). J Phycol 47:1413–1424

    Article  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plantarum 120:179–186

    Article  CAS  Google Scholar 

  • Seaburg KG, Parked BC, Wharton RA, Simmons GM (1981) Temperature-growth responses of algal isolates from Antarctic oases. J Phycol 17:353–360

    Article  Google Scholar 

  • Segovia M, Mata T, Palma A, Garcia-Gomez C, Lorenzo R, Rivera A, Figueroa FL (2015) Dunaliella tertiolecta (Chlorophyta) avoids cell death under ultraviolet radiation by triggering alternative photoprotective mechanisms. Photochem Photobiol 91:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Stamenkovic M, Hanelt D (2013) Adaptation of growth and photosynthesis to certain temperature regimes is an indicator for the geographical distribution of Cosmarium strains (Zygnematophyceae, Streptophyta). Eur J Phycol 48:116–127

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Board Can 167:311

    Google Scholar 

  • Smith RE, Stapleford LC, Ridings RS (1994) The acclimated response of growth, photosynthesis, composition, and carbon balance to temperature in the psychrophilic ice diatom Nitzschia seriata. J Phycol 30:8–16

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plantarum 126:45–51

    Article  CAS  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255

    Article  CAS  PubMed  Google Scholar 

  • Tang EP, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181

    Article  Google Scholar 

  • Teoh M-L, Phang S-M, Chu W-L (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297

    Article  CAS  Google Scholar 

  • Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430

    Article  CAS  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Bioch Biophys Acta Lipids Lipid Metab 1302:17–45

    Article  Google Scholar 

  • Tripathi A, Tripathi DK, Chauhan D, Kumar N, Singh G (2016) Paradigms of climate change impacts on some major food sources of the world: a review on current knowledge and future prospects. Agric Ecosyst Environ 216:356–373

    Article  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  CAS  PubMed  Google Scholar 

  • Vello V, Phang S-M, Chu W-L, Majid NA, Lim P-E, Loh S-K (2014) Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. J Appl Phycol 26:1399–1413

    Article  CAS  Google Scholar 

  • Wang S, Xu Z (2016) Effects of dihydroartemisinin and artemether on the growth, chlorophyll fluorescence, and extracellular alkaline phosphatase activity of the cyanobacterium Microcystis aeruginosa. PLoS One 11(10):e0164842

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong C-Y, Teoh M-L, Phang S-M, Lim P-E, Beardall J (2015) Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from polar, temperate and tropical environments: differential impacts on damage and repair. PLoS One 10(10):e0139469

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong CY, Chu WL, Marchant H, Phang SM (2007) Comparing the response of Antarctic, tropical and temperate microalgae to ultraviolet radiation (UVR) stress. J Appl Phycol 19:689–699

    Article  Google Scholar 

  • Wong CY, Chu WL, Marchant H, Phang SM (2004) Growth response, biochemical composition and fatty acid profiles of four Antarctic microalgae subjected to UV radiation stress. Malaysian J Sci 23:103–118

    CAS  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C-3, C-4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zou S, He M, Fei C, Luo W, Zheng S, Chen B, Wang C (2016) Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations. Bioresour Technol 202:15–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study is supported by the research grants from Ministry of Higher Education, Malaysia, HiCOE research grant (IOES-2014H and IOES-2014), University of Malaya Postgraduate Research Fund (PG146-2015A), and UM-Algae grant (GA003-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaik-Eem Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, B., Lim, PE., Gan, SY. et al. Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. J Appl Phycol 30, 1–13 (2018). https://doi.org/10.1007/s10811-017-1198-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1198-z

Keywords

Navigation