Skip to main content
Log in

Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

When photosynthetic organisms are exposed to abiotic stress, their photosynthetic activity is significantly depressed. In particular, photosystem II (PSII) in the photosynthetic machinery is readily inactivated under strong light and this phenomenon is referred to as photoinhibition of PSII. Other types of abiotic stress act synergistically with light stress to accelerate photoinhibition. Recent studies of photoinhibition have revealed that light stress damages PSII directly, whereas other abiotic stresses act exclusively to inhibit the repair of PSII after light-induced damage (photodamage). Such inhibition of repair is associated with suppression, by reactive oxygen species (ROS), of the synthesis of proteins de novo and, in particular, of the D1 protein, and also with the reduced efficiency of repair under stress conditions. Gene-technological improvements in the tolerance of photosynthetic organisms to various abiotic stresses have been achieved via protection of the repair system from ROS and, also, by enhancing the efficiency of repair via facilitation of the turnover of the D1 protein in PSII. In this review, we summarize the current status of research on photoinhibition as it relates to the effects of abiotic stress and we discuss successful strategies that enhance the activity of the repair machinery. In addition, we propose several potential methods for activating the repair system by gene-technological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32. doi:10.1016/j.bbabio.2004.03.003

    PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125:1842–1853. doi:10.1104/pp. 125.4.1842

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453. doi:10.1104/pp. 011114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Mohanty P, Murata N (2003) Dissection of photodamage at low temperature and repair in darkness suggests the existence of an intermediate form of photodamaged photosystem II. Biochemistry 42:14277–14283. doi:10.1021/bi035205

    PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N (2005) Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant Physiol 137:263–273. doi:10.1104/pp. 104.054478

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371. doi:10.1016/j.bbabio.2007.10.005

    PubMed  CAS  Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265. doi:10.1104/pp. 107.101733

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anderson JM, Chow WS (2002) Structural and functional dynamics of plant photosystem II. Philos Trans R Soc Lond B Biol Sci 357:1421–1430. doi:10.1098/rstb.2002.1138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36:1687–1691

    PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356. doi:10.1093/jxb/eri041

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    PubMed  CAS  Google Scholar 

  • Asada K, Badger MR (1984) Photoreduction of 18O2 and H2 18O with concomitant evolution of 16O2 in intact spinach chloroplasts: evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol 25:1169–1179

    CAS  Google Scholar 

  • Barrs HD (1971) Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. Annu Rev Plant Physiol 22:223–236

    Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol Plant Mol Biol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

  • Bersanini L, Battchikova N, Jokel M, Rehman A, Vass I, Allahverdiyeva Y, Aro EM (2014) Flavodiiron protein Flv2/Flv4-related photoprotective mechanism dissipates excitation pressure of PSII in cooperation with phycobilisomes in cyanobacteria. Plant Physiol 164:805–818. doi:10.1104/pp. 113.231969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci U S A 93:6320–6325

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257. doi:10.1016/S1369-5266(02)00255-8

    PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505. doi:10.1016/j.tplants.2008.06.007

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20. doi:10.1111/J.1365-3040.2010.02232.X

    PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci U S A 97:13430–13435. doi:10.1073/pnas.230451497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402

    CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29:897–907

    PubMed  CAS  Google Scholar 

  • Deshnium P, Gombos Z, Nishiyama Y, Murata N (1997) The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. strain PCC 7942 to low temperature. J Bacteriol 179:339–344

    PubMed  CAS  PubMed Central  Google Scholar 

  • Di Mascio P, Devasagayam TPA, Kaiser S, Sies H (1990) Carotenoids, tocopherols and thiols as biological singlet molecular oxygen quenchers. Biochem Soc Trans 18:1054–1056

    PubMed  Google Scholar 

  • Eckardt NA, Portis AR Jr (1997) Heat denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denatured Rubisco. Plant Physiol 113:243–248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ejima K, Kawaharada T, Inoue S, Kojima K, Nishiyama Y (2012) A change in the sensitivity of elongation factor G to oxidation protects photosystem II from photoinhibition in Synechocystis sp. PCC 6803. FEBS Lett 586:778–783. doi:10.1016/j.febslet.2012.01.042

    PubMed  CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186:52–58. doi:10.1016/0005-2728(94)90134-1

    CAS  Google Scholar 

  • Eriksson MJ, Clarke AK (1996) The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp strain PCC 7942. J Bacteriol 178:4839–4846

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546. doi:10.1104/pp. 116.2.539

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fork DC, Sen A, Williams WP (1987) The relationship between heat-stress and photobleaching in green and blue-green algae. Photosynth Res 11:71–87. doi:10.1007/Bf00117675

    PubMed  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100. doi:10.1104/pp. 110.166181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057. doi:10.1104/pp. 109.3.1047

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fukuzawa H, Ogawa T, Kaplan A (2012) The uptake of CO2 by cyanobacteria and microalgae. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds), Photosynthesis: plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration, Springer, Dordrecht, 34:625–650

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745. doi:10.1002/pmic.200500538

    PubMed  CAS  Google Scholar 

  • Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199–233. doi:10.1146/annurev.bi.57.070188.001215

    PubMed  CAS  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci U S A 91:8787–8791

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559

    PubMed  CAS  PubMed Central  Google Scholar 

  • Greer DH, Berry JA, Björkman O (1986) Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta 168:253–260

    PubMed  CAS  Google Scholar 

  • Grennan AK, Ort DR (2007) Cool temperatures interfere with D1 synthesis in tomato by causing ribosomal pausing. Photosynth Res 94:375–385. doi:10.1007/s11120-007-9169-x

    PubMed  CAS  Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136. doi:10.1016/j.jplph.2006.01.004

    PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80. doi:10.1016/j.bbabio.2004.09.001

    PubMed  CAS  Google Scholar 

  • Hakkila K, Antal T, Rehman AU, Kurkela J, Wada H, Vass I, Tyystjärvi E, Tyystjärvi T (2014) Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1837:217–225. doi:10.1016/j.bbabio.2013.11.011

    PubMed  CAS  Google Scholar 

  • Han H, Gao S, Li B, Dong XC, Feng HL, Meng QW (2010) Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress. J Plant Physiol 167:176–183. doi:10.1016/J.Jplph.2009.08.009

    PubMed  CAS  Google Scholar 

  • Havaux M (1992) Stress tolerance of photosystem II in vivo—antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 100:424–432. doi:10.1104/pp. 100.1.424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P, Dormann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469. doi:10.1105/tpc.105.037036

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hideg E, Spetea C, Vass I (1994) Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim Biophys Acta 1186:143–152

    CAS  Google Scholar 

  • Hideg E, Kos PB, Vass I (2007) Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. Physiol Plant 131:33–40. doi:10.1111/j.1399-3054.2007.00913.x

    PubMed  CAS  Google Scholar 

  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    PubMed  Google Scholar 

  • Hossain MM, Nakamoto H (2002) HtpG plays a role in cold acclimation in cyanobacteria. Curr Microbiol 44:291–296. doi:10.1007/s00284-001-0005-9

    PubMed  CAS  Google Scholar 

  • Hossain MM, Nakamoto H (2003) Role for the cyanobacterial HtpG in protection from oxidative stress. Curr Microbiol 46:70–76. doi:10.1007/s00284-002-3831-5

    PubMed  CAS  Google Scholar 

  • Inoue S, Ejima K, Iwai E, Hayashi H, Appel J, Tyystjärvi E, Murata N, Nishiyama Y (2011) Protection by α-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1807:236–241. doi:10.1016/j.bbabio.2010.11.003

    PubMed  CAS  Google Scholar 

  • Jimbo H, Noda A, Hayashi H, Nagano T, Yumoto I, Orikasa Y, Okuyama H, Nishiyama Y (2013) Expression of a highly active catalase VktA in the cyanobacterium Synechococcus elongatus PCC 7942 alleviates the photoinhibition of photosystem II. Photosynth Res 117:509–515. doi:10.1007/s11120-013-9804-7

    PubMed  CAS  Google Scholar 

  • Jones LW, Kok B (1966) Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41:1037–1043

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kanervo E, Tasaka Y, Murata N, Aro EM (1997) Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 114:841–849. doi:10.1104/pp.114.3.841

  • Kanesaki Y, Los DA, Suzuki I, Murata N (2010) Sensors and signal transducers of environmental stress in cyanobacteria. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological molecular and genomic foundation. Springer, Dordrecht, pp 15–31

    Google Scholar 

  • Kaplan A (1981) Photoinhibition in Spirulina platensis—response of photosynthesis and HCO3 uptake capability to CO2- depleted conditions. J Exp Bot 32:669–677. doi:10.1093/jxb/32.4.669

    CAS  Google Scholar 

  • Kaplan A, Hagemann M, Bauwe H, Kahlon S, Ogawa T (2008) Carbon acquisition by cyanobacteria: mechanisms, comparative genomics, and evolution. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Horizon Scientific, Norwich, pp 305–334

    Google Scholar 

  • Katano Y, Nimura-Matsune K, Yoshikawa H (2006) Involvement of DnaK3, one of the three DnaK proteins of cyanobacterium Synechococcus sp. PCC7942, in translational process on the surface of the thylakoid membrane. Biosci Biotechnol Biochem 70:1592–1598

    PubMed  CAS  Google Scholar 

  • Keren N, Berg A, van Kan PJ, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci U S A 94:1579–1584

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y (2007) Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol Microbiol 65:936–947. doi:10.1111/j.1365-2958.2007.05836.x

    PubMed  CAS  Google Scholar 

  • Kojima K, Motohashi K, Morota T, Oshita M, Hisabori T, Hayashi H, Nishiyama Y (2009) Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 284:18685–18691. doi:10.1074/jbc.M109.015131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21:234–244

    PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331. doi:10.1034/J.1399-3054.2001.1130304.X

    PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Allen RD, Holaday AS (2003) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci 165:1033–1041. doi:10.1016/S0168-9452(03)00294-2

    CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564. doi:10.1007/s11120-008-9349-3

    PubMed  CAS  Google Scholar 

  • Kuroda H, Inagaki N, Satoh K (1992) The level of stromal ATP regulates translation of the D1 protein in isolated chloroplasts. Plant Cell Physiol 33:33–39

    CAS  Google Scholar 

  • Kuroda H, Kobayashi K, Kaseyama H, Satoh K (1996) Possible involvement of a low redox potential component(s) downstream of photosystem I in the translational regulation of the D1 subunit of the photosystem II reaction center in isolated pea chloroplasts. Plant Cell Physiol 37:754–761

    CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–181. doi:10.1104/pp. 120.1.173

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673. doi:10.1111/J.1467-7652.2011.00611.X

    PubMed  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    PubMed  CAS  Google Scholar 

  • Li XP, Müller-Moulé P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci U S A 99:15222–15227. doi:10.1073/pnas.232447699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li M, Ji L, Yang X, Meng Q, Guo S (2012a) The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Plant Cell Rep 31:1969–1979. doi:10.1007/s00299-012-1309-x

    PubMed  CAS  Google Scholar 

  • Li ZR, Keasling JD, Niyogi KK (2012b) Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol 158:313–323. doi:10.1104/pp. 111.181230

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lidholm J, Gustafsson P, Öquist G (1987) Photoinhibition of photosynthesis and its recovery in the green alga Chlamydomonas reinhardii. Plant Cell Physiol 28:1133–1140

    CAS  Google Scholar 

  • Lintala M, Lehtimaki N, Benz JP, Jungfer A, Soll J, Aro EM, Bolter B, Mulo P (2012) Depletion of leaf-type ferredoxin-NADP+ oxidoreductase results in the permanent induction of photoprotective mechanisms in Arabidopsis chloroplasts. Plant J 70:809–817. doi:10.1111/j.1365-313X.2012.04930.x

    PubMed  CAS  Google Scholar 

  • Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003) Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions. Am J Bot 90:1400–1403. doi:10.3732/ajb.90.9.1400

  • Logan BA, Kornyeyev D, Hardison J, Holaday AS (2006) The role of antioxidant enzymes in photoprotection. Photosynth Res 88:119–132. doi:10.1007/s11120-006-9043-2

    PubMed  CAS  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15. doi:10.1016/S0005-2760(98)00091-5

    PubMed  CAS  Google Scholar 

  • Los DA, Suzuki I, Zinchenko VV, Murata N (2007) Stress responses in Synechocystis: regulated genes and regulatory systems. In: Herrero A, Flores E (eds) Cyanobacteria: molecular biology, genomics and evolution caister. Caister Academic Press, pp 117–157

  • Lu C-M, Zhang J-H (1999) Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. J Plant Physiol 155:740–745

    CAS  Google Scholar 

  • Mamedov M, Hayashi H, Murata N (1993) Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron-transport and phosphorylation reactions in Synechocystis PCC6803. Biochim Biophys Acta 1142:1–5. doi:10.1016/0005-2728(93)90077-S

    CAS  Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200. doi:10.1093/pcp/pcp177

    PubMed  CAS  Google Scholar 

  • Mattoo AK, Hoffman-Falk H, Marder JB, Edelman M (1984) Regulation of protein metabolism: coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci U S A 81:1380–1384

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135. doi:10.1016/S1360-1385(99)01387-4

    PubMed  Google Scholar 

  • Miller AG, Canvin DT (1989) Glycoaldehyde inhibits CO2 fixation in the cyanobacterium Synechococcus UTEX 625 without inhibiting the accumulation of inorganic carbon or the associated quenching of chlorophyll a fluorescence. Plant Physiol 91:1044–1049. doi:10.1104/pp. 91.3.1044

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    PubMed  CAS  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224. doi:10.1007/S11120-007-9184-Y

    PubMed  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci U S A 92:6219–6223

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mota-Cadenas C, Alcaraz-Lopez C, Martinez-Ballesta MC, Carvajal M (2010) How salinity affects CO2 fixation by horticultural crops. HortSci 45:1798–1803

    Google Scholar 

  • Mulo P, Sirpiö S, Suorsa M, Aro EM (2008) Auxiliary proteins involved in the assembly and sustenance of photosystem II. Photosynth Res 98:489–501. doi:10.1007/s11120-008-9320-3

    PubMed  CAS  Google Scholar 

  • Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421. doi:10.1016/j.bbabio.2006.11.019

    PubMed  CAS  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133. doi:10.1016/j.bbabio.2012.02.020

    PubMed  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953. doi:10.1111/J.1365-313x.2004.02092.X

    PubMed  CAS  Google Scholar 

  • Nagano T, Kojima K, Hisabori T, Hayashi H, Morita EH, Kanamori T, Miyagi T, Ueda T, Nishiyama Y (2012) Elongation factor G is a critical target during oxidative damage to the translation system of Escherichia coli. J Biol Chem 287:28697–28704. doi:10.1074/jbc.M112.378067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamoto H, Suzuki N, Roy SK (2000) Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett 483:169–174

    PubMed  CAS  Google Scholar 

  • Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807:127–133. doi:10.1016/0005-2728(85)90115-X

    CAS  Google Scholar 

  • Neale PJ, Melis A (1989) Salinity-stress enhances photoinhibition of photosystem II in Chlamydomonas reinhardtii. J Plant Physiol 134:619–622

    CAS  Google Scholar 

  • Neely WC, Martin JM, Barker SA (1988) Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem Photobiol 48:423–428

    PubMed  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568. doi:10.1146/annurev.arplant.47.1.541

  • Nishiyama Y, Kovács E, Lee CB, Hayashi H, Watanabe T, Murata N (1993) Photosynthetic adaptation to high temperature associated with thylakoid membranes of Synechococcus PCC7002. Plant Cell Physiol 34:337–343

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594. doi:10.1093/emboj/20.20.5587

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330. doi:10.1021/bi036178q

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749. doi:10.1016/j.bbabio.2006.05.013

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46. doi:10.1111/j.1399-3054.2011.01457.x

    PubMed  CAS  Google Scholar 

  • Nixon PJ, Barker M, Boehm M, de Vries R, Komenda J (2005) FtsH-mediated repair of the photosystem II complex in response to light stress. J Exp Bot 56:357–363. doi:10.1093/jxb/eri021

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382. doi:10.1093/jxb/eri056

    PubMed  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol Plant Mol Biol 35:415–442. doi:10.1146/annurev.pp.35.060184.002215

    CAS  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp PCC 7942. Plant Physiol 141:758–765. doi:10.1104/pp. 106.076976

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499. doi:10.1021/bi047518q

  • Öquist G, Huner NPA (1991) Effects of cold-acclimation on the susceptibility of photosynthesis to photoinhibition in scots pine and in winter and spring cereals—a fluorescence analysis. Funct Ecol 5:91–100. doi:10.2307/2389559

    Google Scholar 

  • Öquist G, Hurry VM, Huner NPA (1993) Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol 101:245–250

    PubMed  PubMed Central  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639:77–98

    CAS  Google Scholar 

  • Osmond CB (1997) C-4 photosynthesis: thirty or forty years on. Aust J Plant Physiol 24:409–412

    CAS  Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252. doi:10.1007/BF00048597

    PubMed  CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354. doi:10.1093/jexbot/52.365.2345

  • Plaut Z, Bachmann E, Oertli JJ (1991) The effect of salinity on light and dark CO2 fixation of salt-adapted and unadapted cell cultures of Atriplex and tomato. J Exp Bot 42:531–535. doi:10.1093/Jxb/42.4.531

    CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    CAS  Google Scholar 

  • Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2-concentrating mechanism. Photosynth Res 109:47–57. doi:10.1007/s11120-010-9608-y

    PubMed  CAS  Google Scholar 

  • Radmer RJ, Kok B (1976) Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol 58:336–340. doi:10.1104/Pp.58.3.336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Radmer R, Ollinger O (1980) Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol 65:723–729. doi:10.1104/pp. 65.4.723

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rehman AU, Cser K, Sass L, Vass I (2013) Characterization of singlet oxygen production and its involvement in photodamage of photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. Biochim Biophys Acta 1827:689–698. doi:10.1016/j.bbabio.2013.02.016

    PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384. doi:10.1146/annurev.arplant.44.1.357

  • Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N (2007) Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol 143:639–649. doi:10.1104/pp. 106.090449

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    PubMed  CAS  Google Scholar 

  • Sakthivel K, Watanabe T, Nakamoto H (2009) A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Arch Microbiol 191:319–328. doi:10.1007/s00203-009-0457-z

    PubMed  CAS  Google Scholar 

  • Samuelsson G, Lonneborg A, Rosenqvist E, Gustafsson P, Öquist G (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol 79:992–995

    PubMed  CAS  PubMed Central  Google Scholar 

  • Samuelsson G, Lonneborg A, Gustafsson P, Öquist G (1987) The susceptibility of photosynthesis to photoinhibition and the capacity of recovery in high and low-light grown cyanobacteria, Anacystis nidulans. Plant Physiol 83:438–441. doi:10.1104/pp.83.2.438

  • Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47:391–400. doi:10.1093/pcp/pcj006

    PubMed  CAS  Google Scholar 

  • Sarvikas P, Tyystjärvi T, Tyystjärvi E (2010) Kinetics of prolonged photoinhibition revisited: photoinhibited photosystem II centres do not protect the active ones against loss of oxygen evolution. Photosynth Res 103:7–17. doi:10.1007/s11120-009-9496-1

    PubMed  CAS  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schuster G, Even D, Kloppstech K, Ohad I (1988) Evidence for protection by heat-shock proteins against photoinhibition during heat shock. EMBO J 7:1–6

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319. doi:10.1093/jexbot/53.372.1305

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. doi:10.1146/annurev.arplant.58.091406.110525

    PubMed  CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa KI, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51. doi:10.1016/S0014-5793(98)00483-9

    PubMed  CAS  Google Scholar 

  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ (2003) FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 15:2152–2164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sirikhachornkit A, Shin JW, Baroli I, Niyogi KK (2009) Replacement of alpha-tocopherol by beta-tocopherol enhances resistance to photooxidative stress in a xanthophyll-deficient strain of Chlamydomonas reinhardtii. Eukaryot Cell 8:1648–1657. doi:10.1128/ec.00124-09

  • Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ (2006) Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 6:845–864. doi:10.1002/pmic.200500196

    PubMed  CAS  Google Scholar 

  • Solomon A, Beer S, Waisel Y, Jones GP, Paleg LG (1994) Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol Plant 90:198–204. doi:10.1034/J.1399-3054.1994.900128.X

    CAS  Google Scholar 

  • Szalontai B, Nishiyama Y, Gombos Z, Murata N (2000) Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803: the effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta 1509:409–419. doi:10.1016/S0005-2736(00)00323-0

    PubMed  CAS  Google Scholar 

  • Takabe T, Rai V, Hibino T (2006) Metabolic engineering of glycinebetaine. In: Rai A, Takabe T (eds) Abiotic stress tolerance in plants: toward the improvement of global environment and food. Springer, Dordrecht, pp 137–151

    Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60. doi:10.1016/j.tplants.2010.10.001

    PubMed  CAS  Google Scholar 

  • Takahashi S, Murata N (2005) Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim Biophys Acta 1708:352–361. doi:10.1016/j.bbabio.2005.04.003

    PubMed  CAS  Google Scholar 

  • Takahashi S, Murata N (2006) Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. Biochim Biophys Acta 1757:198–205. doi:10.1016/j.bbabio.2006.02.002

    PubMed  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi:10.1016/j.tplants.2008.01.005

    PubMed  CAS  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255. doi:10.1093/pcp/pch028

    PubMed  CAS  Google Scholar 

  • Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144:487–494. doi:10.1104/pp. 107.097253

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009a) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567. doi:10.1104/pp. 108.134122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi S, Whitney SM, Badger MR (2009b) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci U S A 106:3237–3242. doi:10.1073/pnas.0808363106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR (2010) The solar action spectrum of photosystem II damage. Plant Physiol 153:988–993. doi:10.1104/pp. 110.155747

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535. doi:10.1073/pnas.0402907101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    CAS  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Google Scholar 

  • Tyystjärvi E (2013) Photoinhibition of photosystem II. Int Rev Cell Mol Biol 300:243–303. doi:10.1016/B978-0-12-405210-9.00007-2

    PubMed  Google Scholar 

  • Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci U S A 93:2213–2218

    PubMed  PubMed Central  Google Scholar 

  • Tyystjärvi E, Riikonen M, Arisi ACM, Kettunen R, Jouanin L, Foyer CH (1999) Photoinhibition of photosystem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing superoxide dismutase. Physiol Plant 105:409–416. doi:10.1034/J.1399-3054.1999.150304.X

    Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta 1817:209–217. doi:10.1016/j.bbabio.2011.04.014

    PubMed  CAS  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A 89:1408–1412

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203. doi:10.1038/347200a0

    PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci U S A 91:4273–4277

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Noguchi K, Ono N, Inoue S, Terashima I, Kinoshita T (2014) Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc Natl Acad Sci U S A 111:533–538. doi:10.1073/pnas.1305438111

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wei L, Guo J, Ouyang M, Sun X, Ma J, Chi W, Lu C, Zhang L (2010) LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem 285:21391–21398. doi:10.1074/jbc.M110.105064

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weis E (1981) Reversible heat inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39. doi:10.1007/Bf00384234

    PubMed  CAS  Google Scholar 

  • Weis E (1982) Influence of light on the heat sensitivity of the photosynthetic apparatus in isolated spinach chloroplasts. Plant Physiol 70:1530–1534. doi:10.1104/pp. 70.5.1530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc B 355:1517–1529

    CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925. doi:10.1046/j.1365-313X.2002.01476.x

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Inagaki N, Satoh K (2001) Overexpression and characterization of carboxy-terminal processing protease for precursor D1 protein: regulation of enzyme-substrate interaction by molecular environments. J Biol Chem 276:7518–7525. doi:10.1074/jbc.M008877200

    PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp. 105.063164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733. doi:10.1007/S00425-006-0380-3

    PubMed  CAS  Google Scholar 

  • Zhang L, Aro EM (2002) Synthesis, membrane insertion and assembly of the chloroplast-encoded D1 protein into photosystem II. FEBS Lett 512:13–18

    PubMed  CAS  Google Scholar 

  • Zheng CF, Jiang D, Liu FL, Dai TB, Jing Q, Cao WX (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582. doi:10.1016/j.plantsci.2009.01.015

Download references

Acknowledgments

This work was supported, in part, by JSPS KAKENHI Grant Numbers 24570039 and 25119704 (to Y.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y., Murata, N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98, 8777–8796 (2014). https://doi.org/10.1007/s00253-014-6020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6020-0

Keywords

Navigation