Skip to main content

Advertisement

Log in

Temperature effect on microalgae: a crucial factor for outdoor production

  • Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

High rate outdoor production units of microalgae can undergo temperature fluctuations. Seasonal temperature variations as well as more rapid daily fluctuations are liable to modify the growth conditions of microalgae and hence affect production efficiency. The effect of elevated temperatures, above optimal growth temperatures, on growth is seldom reported in literature, but often described as more deleterious than low temperatures. Depending on the species, different strategies are deployed to counteract the effect of above optimal temperatures such as energy re-balancing and cell shrinking. Moreover, long term adaptation of certain species over generation cycles has also been proven efficient to increase optimal temperatures. Physical models coupled to biological kinetics are able to predict the evolution of temperature in the growth media and its effect on the growth rate, highlighting the downstream drastic economic and environmental impacts. Regarding the relative elasticity of microalgae towards temperature issues, cell mortality can depend on species or adapted species and in certain cases can be attenuated. These elements can complement existing models and help visualize the effective impacts of temperature on outdoor cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49:177–190

    Article  Google Scholar 

  • Atkinson D, Ciotti BJ, Montagnes DJS (2003) Protists decrease in size linearly with temperature: ca. 2.5% degrees C(−1). Proc Biol Sc/The Royal Soc 270:2605–2611

    Article  Google Scholar 

  • Baek SH, Shimode S, Han MS, Kikuchi T (2008) Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients. Harmful Algae 7:729–739

    Article  CAS  Google Scholar 

  • Béchet Q, Shilton A, Fringer OB, Muñoz R, Guieysse B (2010) Mechanistic modelling of broth temperature in outdoor photobioreactors. Environ Sc Technol 44(6):2197–2203

    Article  Google Scholar 

  • Béchet Q, Shilton A, Park JBK, Craggs RJ, Guieysse B (2011) Universal temperature model for shallow algal ponds provides improved accuracy. Environ Sci Technol 45(8):3702–3709

    Article  Google Scholar 

  • Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems et economic analysis of microalgae ponds for conversion of CO2 to biomass. US DOE, Pitburgh Energy Technology Centre

  • Benemann JR, Tillett DM (1987) Effects of fluctuating environments on the selection of high yielding microalgae. Final report to the Solar Energy Research Institute

  • Bernard O (1995) Etude expérimentale et théorique de la croissance de Dunaliella tertiolecta (chlorophyceae) soumise à une limitation variable de nitrate: utilisation de la dynamique transitoire pour la conception et la validation des modèles. University Pierre et Marie Curie, Paris VI

    Google Scholar 

  • Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol, accepted manuscript (in press)

  • Borowitzka LJ, Borowitzka MA, Moulton T (1984) The mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiologia 116(117):115–121

    Article  Google Scholar 

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50(2):291–300

    Article  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Cornet JF (2010) Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem Eng Sci 65(2):985–998

    Article  CAS  Google Scholar 

  • Cramer DW, Kuper H, Harlow BL (2001) Carotenoids, antioxidants and ovarian cancer risk in pre- and postmenopausal women. Int J Cancer 94:128–134

    Article  CAS  Google Scholar 

  • Dermoun D, Chaumont D (1992) Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: light and temperature. Bioresour and Technol 42:113–117

    Article  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochi. Biophys Acta 1186:52–58

    Article  CAS  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Eppley RW, Sloan PR (1966) Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol Plantarum 19(1):47–59

    Article  CAS  Google Scholar 

  • Falkowski PG (1977) The adenylate energy charge in marine phytoplankton: the effect of temperature on the physiological state of Skeletonema costatum. Biol Ecol 27:37–45

    Article  Google Scholar 

  • Falkowski PG (1980) Light-shade adaptation in marine phytoplankton. In: Falkowski PG (ed) Primary productivity in the sea. Plenum, Berlin, pp 99–119

    Chapter  Google Scholar 

  • Fawley MW (1984) Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 20:67–72

    Article  Google Scholar 

  • Finenko ZZ, Hoepffner N, Williams R, Piontkovski SA (2003) Phytoplankton carbon to chlorophyll a ratio: response to light, temperature and nutrient limitation. Mar Ecol Journ II(2):40–64

    Google Scholar 

  • García F, Freile-Pelegrín Y, Robledo D (2007) Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour Technol 98(7):1359–1365

    Article  Google Scholar 

  • Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106(1):1–34

    Article  CAS  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43:679–694

    Article  CAS  Google Scholar 

  • Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. P Natl Acad Sci USA 89(20):9959–9963

    Article  CAS  Google Scholar 

  • Gomez PI, Gonzalez MA (2005) The effect of temperature and irradiance on the growth conditions. Biol Res 38:151–162

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314

    Article  Google Scholar 

  • Guterman H, Vonshak A, Ben-Yaakov S (1990) A macromodel for outdoor algal mass production. Biotechnol Bioeng 35(8):809–819

    Article  CAS  Google Scholar 

  • Huertas IE, Rouco M, López-Rodas V, Costas E (2011) Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc Biol Sc/The Royal Soc 278:3534–3543

    Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. P Natl Acad Sci USA 89(21):10302–10305

    Article  CAS  Google Scholar 

  • Jørgensen EG (1968) The adaptation of plankton algae. II. Aspects of the temperature adaptation of Skeletonema costatum. Physiol Pl 21:423–427

    Article  Google Scholar 

  • Kessler E (1985) Upper limits of temperature for growth in Chlorella. Plant Syst Evol 151:67–71

    Article  Google Scholar 

  • Klemetson S, Rogers G (1985) Aquaculture pond temperature modelling. Aquacult Eng 4(3):191–208

    Article  Google Scholar 

  • Krol M, Maxwell DP, Huner NPA (1997) Exposure of Dunaliella salina to low temperature mimics the high light- induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell 38(2):213–216

    Article  CAS  Google Scholar 

  • Kudo I, Miyamoto M, Noiri Y, Maita Y (2000) Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 36:1096–1102

    Article  CAS  Google Scholar 

  • Levasseur ME, Morissette JC, Popovic R, Harrison P (1990) Effects of long term exposure to low temperature on the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae). J Phycol 26:479–484

    Article  Google Scholar 

  • Li WKW (1980) Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics. In: Falkowski PG (ed) Primary productivity in the sea. Plenum press, New York, pp 259–279

    Chapter  Google Scholar 

  • Lobry JR, Rosso L, Flandrois JP (1991) A FORTRAN subroutine for the determination of parameter confidence limits in non-linear models. Binary 3:86–93

    Google Scholar 

  • Losordo TM, Piedrahita RH (1991) Modelling temperature variation and thermal stratification in shallow aquaculture ponds. Ecol Model 54(3–4):189–226

    Article  Google Scholar 

  • Maddux WJ, Jones RF (1964) Some interactions of temperature, light intensity, and nutrient concentration during the continuous culture of Nitzschia closterium and Tetraselmis sp. Limnol Oceanogr 9:79–86

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Maxwell DP, Fal S, Trick CG, Huner N (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105(2):535–543

    CAS  Google Scholar 

  • Milledge JJ (2010) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sc and Bio/Technol 10(1):31–41

    Article  Google Scholar 

  • Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence, or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  • Mortain-Bertrand A, Descolas-Gros C, Jupin H (1988) Pathway of dark inorganic carbon fixation in two species of diatoms: influence of light regime and regulator factors on diel variations. J Plankton Res 10:199–217

    Article  CAS  Google Scholar 

  • Öquist G (1983) Effects of low temperature on photosynthesis. Plant, Cell Environ 6:281–300

    Google Scholar 

  • Peeters JCH, Eilers P (1978) The relationship between light intensity and photosynthesis: a simple mathematical model. Hydrobiol Bull 12:134–136

    Article  Google Scholar 

  • Pinon A, Zwietering M, Perrier L, Membre JM, Leporq B, Mettler E, Thuault D (2004) Development and validation of experimental protocols for use of cardinal models for prediction of microorganism growth in food products. Appl Environ Microb 70:1081–1087

    Article  CAS  Google Scholar 

  • Pisal DS, Lele SS (2005) Carotenoid production from microalgae, Dunaliella salina. Indian J of Biotechnol 4:476–483

    CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WGH (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    Article  CAS  Google Scholar 

  • Riley GA (1947) Factors controlling phytoplankton populations on Georges Bank. J Mar Res 6:54–73

    Google Scholar 

  • Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004a) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004b) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in Plants from contrasting thermal environments 1. Society 134:1460–1470

    CAS  Google Scholar 

  • Sandnes JM, Källqvist T, Wenner D, Gislerød HR (2005) Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J App Phycol 17(6):515–525

    Article  Google Scholar 

  • Sorokin C, Krauss RW (1962) Effects of Temperature and Illuminance on Chlorella Growth uncoupled from cell division. Plant Physiol 37:37–42

    Article  CAS  Google Scholar 

  • Staehr P, Birkeland MJ (2006) Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycol 45(6):648–656

    Article  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150

    Article  Google Scholar 

  • Sukenik A, Falkowski PG (1987) Potential enhancement of photosynthetic energy conversion in algal mass culture. Biotech Bioeng 30:970–977

    Article  CAS  Google Scholar 

  • Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31:880–888

    Article  Google Scholar 

  • Ukeles R (1961) The effect of temperature on the growth and survival of several marine algal species. The Biol Bull 120(2):255

    Article  Google Scholar 

  • Vollenweider RA (1966) Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. In: G. C. R. (ed) (pp. 426–457) University of California

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science (New York NY) 329(5993):796–799

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Yu-ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102:3098–3102

    Article  Google Scholar 

Download references

Acknowledgments

This work benefited from the support of the SYMBIOSE research project funded by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bernard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ras, M., Steyer, JP. & Bernard, O. Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12, 153–164 (2013). https://doi.org/10.1007/s11157-013-9310-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9310-6

Keywords

Navigation