Skip to main content
Log in

Multi-Party Quantum Private Comparison Based on Entanglement Swapping of Bell Entangled States within d-Level Quantum System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a multi-party quantum private comparison (MQPC) scheme is suggested based on entanglement swapping of Bell entangled states within d-level quantum system, which can accomplish the equality comparison of secret binary sequences from n users via one execution of scheme. Detailed security analysis shows that both the outside attack and the participant attack are ineffective. The suggested scheme needn’t establish a private key among n users beforehand through the quantum key distribution (QKD) method to encrypt the secret binary sequences. Compared with previous MQPC scheme based on d-level Cat states and d-level Bell entangled states, the suggested scheme has distinct advantages on quantum resource, quantum measurement of third party (TP) and qubit efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), p. 160, Washington, DC (1982)

  2. Boudot, F., Schoenmakers, B., Traor’e, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. (Special Issue on Coding and Cryptology). 111(1–2), 23–36 (2001)

    Article  MathSciNet  Google Scholar 

  3. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A : Math. Theor. 42, 055305 (2009)

  4. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  5. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10, 1250065 (2012)

    Article  MathSciNet  Google Scholar 

  6. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  7. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11, 1350039 (2013)

    Article  MathSciNet  Google Scholar 

  8. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1981–1990 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2014)

    Article  ADS  Google Scholar 

  11. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  13. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  Google Scholar 

  14. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085–1091 (2014)

    Article  MathSciNet  Google Scholar 

  16. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13, 2375–2389 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280–290 (2016)

  19. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

  20. Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys, Mech. Astron. 60(9), 090312 (2017)

    Article  ADS  Google Scholar 

  21. Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    Article  MathSciNet  Google Scholar 

  22. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)

  23. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896 (2006)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

    Google Scholar 

  25. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  26. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

Download references

Funding

Funding by the National Natural Science Foundation of China (Grant No.62071430) and Zhejiang Gongshang University, Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (No. 2013E10012) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY., Hu, JL. Multi-Party Quantum Private Comparison Based on Entanglement Swapping of Bell Entangled States within d-Level Quantum System. Int J Theor Phys 60, 1471–1480 (2021). https://doi.org/10.1007/s10773-021-04771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04771-7

Keywords

Navigation