Skip to main content
Log in

Two-Party Quantum Private Comparison with Five-Qubit Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a two-party quantum private comparison (QPC) protocol is proposed by using five-qubit entangled states as the quantum resource. The proposed protocol needs the help from a semi-honest third party (TP), who is allowed to misbehave on his own but not allowed to conspire with the adversary including the dishonest user. The proposed protocol has the following distinct features: (1) One five-qubit entangled state can be used to achieve the equality comparison of two bits in each round of comparison; (2) Neither unitary operations nor quantum entanglement swapping technology is needed, both of which may consume expensive quantum devices; (3) Only Bell measurements and single-particle measurements are employed, both of which can be realized with current quantum technologies; (4) The security toward both the outside attack and the participant attack can be guaranteed; (5) The private information of two parties is not leaked out to TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  7. Su, X.L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59(11), 1083–1090 (2014)

    Article  Google Scholar 

  8. Zhang, C.M., Song, X., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Article  Google Scholar 

  9. Quan, D.X., Zhu, C.H., Liu, S.Q., Pei, C.X.: A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state. Chin. Phys. B 24, 050309 (2015)

    Article  ADS  Google Scholar 

  10. Zhang, C.M., Li, M., Yin, Z.Q., et al.: Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China-Phys. Mech. Astron. 58, 590301 (2015)

    Article  Google Scholar 

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  14. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  Google Scholar 

  15. Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phys. C 20(10), 1531–1535 (1999)

    Article  ADS  MATH  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  17. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  18. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  20. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  21. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne- Zeilinger state. Opt. Commun. 253 (1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  22. Chang, Y, Zhang S.B., Yan, L.L., Han, G.H.: Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state. Chin. Phys. B 24, 050307 (2015)

    Article  ADS  Google Scholar 

  23. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  24. Chang, Y., Xu, C.X.: Zhang, S.B., others.: controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)

    Article  Google Scholar 

  25. Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. arXiv:0403215.pdf (2004)

  26. Zhang, Z.J., Man, Z.X.: Secure bidirectional quantum communication protocol without quantum channel. arXiv:0403217.pdf (2004)

  27. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19 (2007)

    Article  ADS  Google Scholar 

  29. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China-Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  31. Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China-Phys. Mech. Astron. 58(4), 040301 (2015)

    Article  Google Scholar 

  32. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A.: Can the states of the W-class be suitable for teleportation? Phys. Lett. A 314, 267–271 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zhang, Z.J., Zhong, X.M.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341, 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  35. Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 49, 129–134 (2008)

    Article  ADS  Google Scholar 

  36. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: Centrally controlled quantum teleportation. Opt. Commun. 283, 4802–4809 (2010)

    Article  ADS  Google Scholar 

  37. Heo, J., Hong, C.H., Lim, J.I., Yang HJ.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)

    Article  ADS  Google Scholar 

  38. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  40. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  41. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10, 1250065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  43. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52, 3212–3219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11, 1350039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process 12, 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process 12, 1981–1990 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13, 239–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14, 4593–4600 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561 (2010)

    Article  ADS  Google Scholar 

  54. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412–2414 (2011)

    Article  ADS  Google Scholar 

  55. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51, 3596–3604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  58. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W States. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  59. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf. 10, 1250045 (2012)

    Article  MathSciNet  Google Scholar 

  60. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using χ-type state. Int. J. Theor. Phys. 51, 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52, 4185–4194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38(5), 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Borras, A., Plastino, A.R., Batlel, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40, 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333 (2009)

    Article  ADS  Google Scholar 

  67. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    Article  ADS  Google Scholar 

  68. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  69. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  70. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2006 (2896)

    Google Scholar 

  71. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  72. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  73. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  74. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Funding by the National Natural Science Foundation of China (Grant No.61402407) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY., Ji, ZX. Two-Party Quantum Private Comparison with Five-Qubit Entangled States. Int J Theor Phys 56, 1517–1529 (2017). https://doi.org/10.1007/s10773-017-3291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3291-0

Keywords

Navigation