Skip to main content
Log in

Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum private comparison (QPC) aims to accomplish the equality comparison of the secrets from different users without disclosing their genuine contents by using the principles of quantum mechanics. In this paper, we summarize eight modes of quantum state preparation and transmission existing in current QPC protocols first. Then, by using the mode of scattered preparation and one-way convergent transmission, we construct a new multi-user quantum private comparison (MQPC) protocol with two-particle maximally entangled states, which can accomplish arbitrary pair’s comparison of equality among K users within one execution. Analysis turns out that its output correctness and its security against both the outside attack and the participant attack are guaranteed. The proposed MQPC protocol can be implemented with current technologies. It can be concluded that the mode of scattered preparation and one-way convergent transmission of quantum states is beneficial to designing the MQPC protocol which can accomplish arbitrary pair’s comparison of equality among K users within one execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, in Quantum cryptography: Public-key distribution and coin tossing: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, IEEE, 1984), pp. 175–179.

    Google Scholar 

  2. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett. 68, 557 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Cabello, Phys. Rev. Lett. 85, 5635 (2000).

    Article  ADS  Google Scholar 

  5. F. G. Deng, and G. L. Long, Phys. Rev. A 68, 042315 (2003).

    Article  ADS  Google Scholar 

  6. F. G. Deng, and G. L. Long, Phys. Rev. A 70, 012311 (2004).

    Article  ADS  Google Scholar 

  7. X. L. Su, Chin. Sci. Bull. 59, 1083 (2014).

    Article  Google Scholar 

  8. C. M. Zhang, X. T. Song, P. Treeviriyanupab, M. Li, C. Wang, H. W. Li, Z. Q. Yin, W. Chen, and Z. F. Han, Chin. Sci. Bull. 59, 2825 (2014).

    Article  Google Scholar 

  9. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev. A 59, 162 (1999).

    Article  ADS  Google Scholar 

  11. G. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, Phys. Rev. A 69, 052307 (2004).

    Article  ADS  Google Scholar 

  12. J. Lin, and T. Hwang, Optics Commun. 284, 1468 (2011).

    Article  ADS  Google Scholar 

  13. J. H. Chen, K. C. Lee, and T. Hwang, Int. J. Mod. Phys. C 20, 1531 (2009).

    Article  ADS  Google Scholar 

  14. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

    Article  ADS  Google Scholar 

  15. K. Boström, and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002).

    Article  ADS  Google Scholar 

  16. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    Article  ADS  Google Scholar 

  17. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).

    Article  ADS  Google Scholar 

  18. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

    Article  ADS  Google Scholar 

  19. C. Wang, F. G. Deng, and G. L. Long, Optics Commun. 253, 15 (2005).

    Article  ADS  Google Scholar 

  20. X. B. Chen, Q. Y. Wen, F. Z. Guo, Y. Sun, G. Xu, and F. C. Zhu, Int. J. Quantum Inform. 06, 899 (2008).

    Article  Google Scholar 

  21. S. K. Chong, and T. Hwang, Optics Commun. 284, 515 (2011).

    Article  ADS  Google Scholar 

  22. D. Liu, J. L. Chen, and W. Jiang, Int. J. Theor. Phys. 51, 2923 (2012).

    Article  Google Scholar 

  23. Z. W. Sun, R. G. Du, and D. Y. Long, Int. J. Theor. Phys. 51, 1946 (2012).

    Article  Google Scholar 

  24. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Eur. Phys. J. D 67, 30 (2013), arXiv: 1302.0045.

    Article  ADS  Google Scholar 

  25. X. F. Zou, and D. W. Qiu, Sci. China-Phys. Mech. Astron. 57, 1696 (2014).

    Article  ADS  Google Scholar 

  26. Y. Chang, C. X. Xu, S. B. Zhang, and L. L. Yan, Chin. Sci. Bull. 59, 2541 (2014).

    Article  Google Scholar 

  27. Y. Chen, Z. X. Man, and Y. J. Xia, Chin. Phys. Lett. 24, 19 (2007).

    Article  ADS  Google Scholar 

  28. T. Y. Ye, and L. Z. Jiang, Chin. Phys. Lett. 30, 040305 (2013).

    Article  ADS  Google Scholar 

  29. M. Jakobi, C. Simon, N. Gisin, J. D. Bancal, C. Branciard, N. Walenta, and H. Zbinden, Phys. Rev. A 83, 022301 (2011), arXiv: 1002.4360.

    Article  ADS  Google Scholar 

  30. F. Gao, B. Liu, Q. Y. Wen, and H. Chen, Opt. Express 20, 17411 (2012), arXiv: 1111.1511.

    Article  ADS  Google Scholar 

  31. F. Gao, B. Liu, W. Huang, and Q. Y. Wen, IEEE J. Select. Topics Quantum Electron. 21, 98 (2015).

    Article  Google Scholar 

  32. B. Liu, F. Gao, W. Huang, and Q. Y. Wen, Sci. China-Phys. Mech. Astron. 58, 100301 (2015), arXiv: 1511.05267.

    Article  Google Scholar 

  33. C. Y. Wei, T. Y. Wang, and F. Gao, Phys. Rev. A 93, 042318 (2016).

    Article  ADS  Google Scholar 

  34. Y. G. Yang, Q. Y. Wen, J Phys A: Math Theor, 42, 055305 (2009).

    Article  ADS  Google Scholar 

  35. H. K. Lo, Phys. Rev. A 56, 1154 (1997).

    Article  ADS  Google Scholar 

  36. X. B. Chen, G. Xu, X. X. Niu, Q. Y. Wen, and Y. X. Yang, Optics Commun. 283, 1561 (2010).

    Article  ADS  Google Scholar 

  37. J. Lin, H. Y. Tseng, and T. Hwang, Optics Commun. 284, 2412 (2011).

    Article  ADS  Google Scholar 

  38. Y. G. Yang, W. F. Cao, and Q. Y. Wen, Phys. Scr. 80, 065002 (2009).

    Article  ADS  Google Scholar 

  39. W. Liu, Y. B. Wang, and W. Cui, Commun. Theor. Phys. 57, 583 (2012).

    Article  ADS  Google Scholar 

  40. Y. G. Yang, J. Xia, X. Jia, L. Shi, and H. Zhang, Int. J. Quantum Inform. 10, 1250065 (2012).

    Article  Google Scholar 

  41. X. B. Chen, Y. Su, X. X. Niu, and Y. X. Yang, Quantum Inf. Process. 13, 101 (2014).

    Article  ADS  Google Scholar 

  42. B. Liu, H. Y. Gao, H. Y. Jia, W. Huang, W. W. Zhang, and Q. Y. Wen, Quantum Inf. Process. 12, 887 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  43. W. Zi, F. Z. Guo, Y. Luo, S. H. Cao, and Q. Y. Wen, Int. J. Theor. Phys. 52, 3212 (2013).

    Article  Google Scholar 

  44. H. Y. Tseng, J. Lin, and T. Hwang, Quantum Inf. Process. 11, 373 (2012).

    Article  MathSciNet  Google Scholar 

  45. C. Wang, G. Xu, and Y. X. Yang, Int. J. Quantum Inform. 11, 1350039 (2013).

    Article  ADS  Google Scholar 

  46. Y. G. Yang, J. Xia, X. Jia, and H. Zhang, Quantum Inf. Process. 12, 877 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  47. W. W. Zhang, and K. J. Zhang, Quantum Inf. Process. 12, 1981 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  48. Y. B. Li, Y. J. Ma, S. W. Xu, W. Huang, and Y. S. Zhang, Int. J. Theor. Phys. 53, 3191 (2014).

    Article  Google Scholar 

  49. X. T. Liu, B. Zhang, J. Wang, C. J. Tang, and J. J. Zhao, Quantum Inf. Process. 13, 71 (2014).

    Article  ADS  Google Scholar 

  50. W. Liu, and Y. B. Wang, Int. J. Theor. Phys. 51, 3596 (2012).

    Article  Google Scholar 

  51. Y. J. Chang, C. W. Tsai, and T. Hwang, Quantum Inf. Process. 12, 1077 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Li, H. F. Zhou, L. Jia, and T. T. Zhang, Int. J. Theor. Phys. 53, 2167 (2014).

    Article  Google Scholar 

  53. W. Liu, Y. B. Wang, and Z. T. Jiang, Optics Commun. 284, 3160 (2011).

    Article  ADS  Google Scholar 

  54. W. W. Zhang, D. Li, and Y. B. Li, Int. J. Theor. Phys. 53, 1723 (2014).

    Article  Google Scholar 

  55. Z. X. Ji, and T. Y. Ye, Commun. Theor. Phys. 65, 711 (2016).

    Article  ADS  Google Scholar 

  56. Z. W. Sun, and D. Y. Long, Int. J. Theor. Phys. 52, 212 (2013).

    Article  MathSciNet  Google Scholar 

  57. W. Liu, Y. B. Wang, Z. T. Jiang, and Y. Z. Cao, Int. J. Theor. Phys. 51, 69 (2012).

    Article  Google Scholar 

  58. W. Liu, Y. B. Wang, Z. T. Jiang, Y. Z. Cao, and W. Cui, Int. J. Theor. Phys. 51, 1953 (2012).

    Article  Google Scholar 

  59. S. Lin, G. D. Guo, and X. F. Liu, Int. J. Theor. Phys. 52, 4185 (2013).

    Article  Google Scholar 

  60. T. Y. Ye, Commun. Theor. Phys. 67, 147 (2017).

    Article  ADS  Google Scholar 

  61. T. Y. Ye, and Z. X. Ji, Int. J. Theor. Phys. 56, 1517 (2017).

    Article  Google Scholar 

  62. W. Liu, Y. B. Wang, and X. M. Wang, Int. J. Theor. Phys. 53, 1085 (2014).

    Article  Google Scholar 

  63. Q. L. Wang, H. X. Sun, and W. Huang, Quantum Inf. Process. 13, 2375 (2014).

    Article  MathSciNet  Google Scholar 

  64. T. Y. Ye, Commun. Theor. Phys. 66, 280 (2016).

    Article  ADS  Google Scholar 

  65. C. Y. Li, H. Y. Zhou, Y. Wang, and F. G. Deng, Chin. Phys. Lett. 22, 1049 (2005), arXiv: 0705.1746.

    Article  ADS  Google Scholar 

  66. C. Y. Li, X. H. Li, F. G. Deng, P. Zhou, Y. J. Liang, and H. Y. Zhou, Chin. Phys. Lett. 23, 2896 (2006), arXiv: 0705.1748.

    Article  ADS  Google Scholar 

  67. P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

    Article  ADS  Google Scholar 

  68. Q. Y. Cai, Phys. Lett. A 351, 23 (2006).

    Article  ADS  Google Scholar 

  69. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  70. F. Gao, S. J. Qin, Q. Y. Wen, F. C. Zhu, Quantum Inf. Comput. 7, 329 (2007).

    MathSciNet  Google Scholar 

  71. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  72. H. Weinfurter, and M. Żukowski, Phys. Rev. A 64, 010102 (2001).

    Article  ADS  Google Scholar 

  73. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Nat. Phys. 3, 91 (2007).

    Article  Google Scholar 

  74. L. X. You, X. F. Shen, and X. Y. Yang, Chin. Sci. Bull. 55, 441 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianYu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Ji, Z. Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys. Mech. Astron. 60, 090312 (2017). https://doi.org/10.1007/s11433-017-9056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9056-6

Keywords

Navigation