Skip to main content
Log in

Circular Multi-Party Quantum Private Comparison with n-Level Single-Particle States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a novel multi-party quantum private comparison (MQPC) protocol for equality comparison with n-level single-particle states is constructed, where the encoded particles are transmitted in a circular way. Here, n parties employ the qudit shifting operation to encode their private secrets and can compare the equality of their private secrets within one time execution of protocol. The proposed MQPC protocol can overcome both the outside attack and the participant attack. Specially, each party’s secret can be kept unknown to other parties and the third party (TP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

  5. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  6. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  7. Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Article  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  9. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B. 20(10), 100309 (2011)

  10. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A. 358(4), 256–258 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  12. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  14. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  15. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A. 324(5), 420–424 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein-Podolsky- Rosen pairs. Phys. Lett. A. 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A. 82(6), 062315 (2010)

    Article  ADS  Google Scholar 

  19. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, p.160 (1982)

  20. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. 111(1–2), 23–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  22. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  24. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  27. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52, 3212–3219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X.T., Zhang, B., Wang, J., Tang, C.J., Zhao, J.J.: Differential phase shift quantum private comparison. Quantum Inf. Process. 13, 71–84 (2014)

    Article  ADS  Google Scholar 

  31. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52, 4185–4194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  34. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int J Quantum Inf. 11, 1350039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d dimensional basis states without entanglement swapping. Int J Theor Phys. 53, 1085–1091 (2014)

  38. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf Process. 13, 2375–2389 (2014)

  39. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf Process. 16(7), 177 (2017)

  40. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf Process. 13, 2343–2352 (2014)

  41. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf Process. 14(11), 4225–4235 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf Process. 17(10), 252 (2018)

    Article  ADS  MATH  Google Scholar 

  44. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  45. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett. 23(11), 2896 (2006)

    Article  ADS  Google Scholar 

  46. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  47. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett. 24(1), 19 (2007)

    Article  ADS  Google Scholar 

  48. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin Phys Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  49. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A 2006, 351(1–2):23–25

  50. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. (2005), arXiv: quant-ph/0508168

  51. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A. 74, 054302 (2006)

    Article  ADS  Google Scholar 

  52. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  53. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “quantum exam” [Phys Lett A 350(2006) 174]. Phys Lett A. 360(6), 748–750 (2007)

    Article  ADS  Google Scholar 

  55. Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur Phys J D 56(3), 445–448 (2010)

  56. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys Rev A. 76(6), 062324 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding by the Natural Science Foundation of Zhejiang Province (Grant No.LY18F020007) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tian-Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong-Qiang, Y., Tian-Yu, Y. Circular Multi-Party Quantum Private Comparison with n-Level Single-Particle States. Int J Theor Phys 58, 1282–1294 (2019). https://doi.org/10.1007/s10773-019-04019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04019-5

Keywords

PACS

Navigation