Skip to main content
Log in

Fuzzy Matching Based on Gray-scale Difference for Quantum Images

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a quantum computer. In: Proceedings of the First International Symposium on Algorithmic Number Theory, ANTS-I, pp. 289 (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  4. Venegas-Addraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE-The international Society for Optical Engineering, pp. 1085–1090 (2003)

  5. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  6. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a Novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56, 1382–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14, 1589–1604 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Zhou, R. -G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. p. 7 (2017)

  12. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Zhang, W.W., Gao, F., Liu, B., Jia, H.Y., Wen, Q.Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52, 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016)

    Article  MATH  Google Scholar 

  16. Zhang, Y., Lu, K., Gao, Y.H.: QSObel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58, 1–13 (2014)

    MATH  Google Scholar 

  17. Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14, 1573–1588 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Curtis, D., Meyer, D.A.: Towards quantum template matching. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 134 (2004)

  19. Yang, Y.G., Zhao, Q.Q., Sun, S.J.: Novel quantum gray-scale image matching. Optik 126, 3340–3343 (2015)

    Article  ADS  Google Scholar 

  20. Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15, 3543–3572 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Dang, Y., Jiang, N., Hu, H., Zhang, W.: Analysis and improvement of the quantum image matching. Quantum Inf. Process. 16, 1–13 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proceedings of the 2009 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2009, pp. 229–234 (2009)

  23. Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: Proceedings of the IEEE Conference on Nanotechnology, pp. 1430–1435 (2011)

  24. Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 1–21 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61463016, 61763014, “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300, the advantages of scientific and technological innovation team of Nanchang City under Grant No. 2015CXTD003, and the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Zhou, RG., Liu, X. et al. Fuzzy Matching Based on Gray-scale Difference for Quantum Images. Int J Theor Phys 57, 2447–2460 (2018). https://doi.org/10.1007/s10773-018-3766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3766-7

Keywords

Navigation