Skip to main content
Log in

Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum image processing is one of the most active fields in quantum computation and quantum information processing. Some concepts of quantum images and transformations have emerged in recent years. This paper proposes a quantum algorithm to scale up quantum images based on nearest-neighbor interpolation with integer scaling ratio. Firstly, the novel enhanced quantum representation is improved to the generalized quantum image representation to represent a quantum image with arbitrary size \(H \times W\). Then, nearest-neighbor interpolation is used to create new pixels in the enlarged images. Based on them, quantum image scaling up algorithms in the form of circuits are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

  4. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  5. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  6. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Sun, B., Iliyasu, A.M., Yan, F., Dong, F.Y., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  11. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Li, H.S., Zhu, Q.X., Lan, S., Shen, C.Y., Zhou, R.G., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Li, H.S., Zhu, Q.X., Zhou, R.G., Lan, S., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, New Jersey (2007)

    Google Scholar 

  16. http://www.mathworks.cn/cn/help/images/ref/imresize.html (2014)

  17. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  20. Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  21. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theory Phys. 52, 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Song, X.H., Wang, S., Liu, S., El-Latif, Ahmed A.Abd, Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Song, X.H., Wang, S., Liu, S., El-Latif, Ahmed. A. Abd., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)

  27. Jiang, N., Wang, L.: A quantum image information hiding algorithm based on Moir\(\acute{e}\) pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  Google Scholar 

  28. Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Adv. Intell. Syst. Comput. 298, 243–250 (2014)

    Article  Google Scholar 

  29. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  Google Scholar 

  30. Zhou, Ri-Gui, Wu, Qian, Zhang, Man-Qun, et al.: A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recognit. 321, 480–487 (2012)

    Article  Google Scholar 

  31. Zhou, Ri-Gui, Wu, Qian, Zhang, Man-Qun, et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  32. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  33. Yuen, H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113(8), 405–407 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  34. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  35. Iliyasu, A.M., Le, P.Q., Dong, F.Y., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

This work is supported by the Fundamental Research Funds for the Central Universities under Grants No. 2015JBM027 and the National Scholarship under Grants Nos. 201406545034 and 201507095087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Wang, J. & Mu, Y. Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf Process 14, 4001–4026 (2015). https://doi.org/10.1007/s11128-015-1099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1099-5

Keywords

Navigation