Skip to main content
Log in

Processing images in entangled quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce a novel method for storing and retrieving binary geometrical shapes in quantum mechanical systems. In contrast to standard procedures in classical computer science in which image reconstruction requires not only the storage of light parameters (like light frequency) but also the storage and use of additional information like correlation and pixel spatial disposition, we show that the employment of maximally entangled qubits allows to reconstruct images without using any additional information. Moreover, we provide a concrete application of our proposal in the field of image recognition and briefly explore potential experimental realizations. Our proposal could be employed to enable emergent quantum technology to be used in high-impact scientific disciplines in which extensive use of image processing is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valicenti, R.K., Dicker, A.P., Jaffray, D.A. (eds.): Image-Guided Radiation Therapy of Prostate Cancer, 312 pp. Informa HealthCare, London (2008)

  2. Grover, L.K.: A fast quantum-mechanical algorithm for database search. In: Proceedings of the 28th annual ACM Symposium on Theory of Computing, Philadelphia, PA, pp. 212–219 (1996)

  3. Greenberger D.M., Horne M.A., Zeilinger A.: Going beyond Bell’s theorem. In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)

    Google Scholar 

  4. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bell J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, UK (1989)

    Google Scholar 

  6. Seevinck M., Svetlichny G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    Article  PubMed  MathSciNet  ADS  Google Scholar 

  7. Collins D., Gisin N., Popescu S., Roberts D., Scarani V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    Article  PubMed  ADS  Google Scholar 

  8. Morris T.: Computer Vision and Image Processing. Palgrave MacMillan, NY, USA (2004)

    Google Scholar 

  9. Davies E.R.: Machine Vision: Theory, Algorithms, Practicalities (Signal Processing and its Applications). Morgan Kaufmann, San Francisco, USA (2005)

    Google Scholar 

  10. Goutsias J., Heijmans H.J.A.M. (eds): Mathematical Morphology. IOS Press, Amsterdam, The Netherlands (2000)

    Google Scholar 

  11. Häffner H., Hänsel W., Roos C.F., Benhelm J., Chek-al-kar D., Chwalla M., Körber T., Rapol U.D., Riebe M., Schmidt P.O., Becher C., Gühne O., Dür W., Blatt R.: Scalable multiparticle entanglement of trapped ions. Nature (London) 438, 643–646 (2005)

    Article  ADS  Google Scholar 

  12. Zou X., Mathis W.: One-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED. Phys. Rev. A 70, 035802 (2004)

    Article  ADS  Google Scholar 

  13. Leibfried D., Knill E., Seidelin S., Britton J., Blakestad R.B., Chiaverini J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Reichle R., Wineland D.J.: Creation of a six-atom Schröodinger cat state. Nature (London) 438, 639–642 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Wei L.F., Liu Y., Nori F.: Generation and control of Greenberg–Horne–Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Walther P., Aspelmeyer M., Zeilinger A.: Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007)

    Article  ADS  Google Scholar 

  16. Fiorentino, M., Wong, F.N.C.: Deterministic controlled-not gate for two-qubit single-photon quantum logic. In: Proceedings of the Quantum Electronics Conference, IEQC, pp. 30–32 (2004)

  17. Kwiat P.G.: Hyper-entangled states. J. Mod. Opt. 44(11/12), 2173–2184 (1997)

    MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Venegas-Andraca.

Additional information

This work was supported by EPSRC and CONACyT (scholarship 148528).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venegas-Andraca, S.E., Ball, J.L. Processing images in entangled quantum systems. Quantum Inf Process 9, 1–11 (2010). https://doi.org/10.1007/s11128-009-0123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0123-z

Keywords

PACS

Navigation