Skip to main content
Log in

Canadian Field Soils IV: Modeling Thermal Conductivity at Dryness and Saturation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity data of 40 Canadian soils at dryness \((\lambda _{\mathrm{dry}})\) and at full saturation \((\lambda _{\mathrm{sat}})\) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\), was evaluated using a standard deviation (SD) formula. Among the mechanistic models applied to dry soils, the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by MaxRTCM \((\textit{SD} = \pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\), followed by de Vries and a series-parallel model (\(\hbox {S-}{\vert }{\vert }\)). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C–B) and Chen’s equation), the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by the C–B model \((\pm ~0.022\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\). Among the empirical equations, the top \(\lambda _{\mathrm{dry}}\) estimates were given by CDry-40 \((\pm ~0.021\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) and \(\pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) for18-coarse and 22-fine soils, respectively). In addition, \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\) models were applied to the \(\lambda _{\mathrm{sat}}\) database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest \(\lambda _{\mathrm{dry}}\) estimates for the 40 Canadian soils as well as the 21 soils. The best \(\lambda _{\mathrm{sat}}\) estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the \(\hbox {S-}{\vert }{\vert }\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(f_{{sc}}\) :

Inter-particle cementation factor

g :

Shape value

i :

Soil solid component

j :

Total number of soil solid components

k :

Shape factor

\(m_{\mathrm{cl}}\) :

Mass fraction of clay particles

\(m_{\mathrm{sa}}\) :

Mass fraction of sand particles

\(m_{\mathrm{si}}\) :

Mass fraction of silt particles

n :

Soil porosity

\(n_{\mathrm{a}}\) :

Minuscule portion of air

\(n_{\mathrm{w}}\) :

Minuscule portion of water

\(n_{\mathrm{wm}}\) :

Total minuscule fraction of air and water

\(R_{\mathrm{con}}\) :

Radius of an elastic inter-particle contact region (m)

\(R_{\mathrm{s}}\) :

Mean radius of solid particles (m)

\(R^{\prime }\) :

Particle roundness

T :

Temperature \(({}^\circ \hbox {C})\)

\(\alpha \) :

Contact resistance factor

\(\beta \) :

Cubic cell model coefficient

\(\varepsilon \) :

Inter-particle contact coefficient

\(\zeta \) :

Phase weighting factor

\(\theta \) :

Volumetric fraction

\(\varTheta \) :

Volumetric mineral content

\(\lambda \) :

Thermal conductivity \((\hbox {Wm}^{-1}\cdot \hbox {K}^{-1})\)

\(\rho \) :

Particle density \((\hbox {kg}\cdot \hbox {m}^{-3})\)

\(\varPsi \) :

Particle shape (maxRTCM)

a:

Air

ave:

Average

b:

Bulk

cal:

Calculated

cl:

Clay

con:

Contact

cor:

Correlation

dry:

Dryness

eff:

Effective

exp:

Experimental

f:

Fluid (air or water)

o-min:

Other minerals

qtz:

Quartz

r:

Radiation

s:

Soil solids

sa:

Sand

sat:

Saturation

sat-coarse:

Saturated coarse soils

sat-fine:

Saturated fine soils

sb:

Solid bridged

si:

Silt

u:

Fitting parameter in C–B model

w:

Water

z:

Constant in C–K model

\({\vert }{\vert }\) :

Parallel

\(\bot \) :

Perpendicular

A-GMM:

Advanced geometric mean model

C–B:

Chaudhary and Bhandari model

CDry-40:

40-Canadian dry soils

C–K:

Côté–Konrad model

CSat-18:

18-Canadian saturated coarse soils

CSat-22:

22-Canadian saturated fine soils

GMM:

Geometric mean model

GSC:

Gaylon Sanford Campbell model

Ke:

Kersten’s non-dimensional function

LRGH:

Lu–Ren–Gong–Horton model

M:

number of model fitting parameters

MaxRTCM:

Maxwellian Regolith thermal conductivity model

N:

number of independent \(\lambda \) records

\(\hbox {S-}{\vert }{\vert }\) :

Series-parallel model

\(\textit{SD}\) :

Standard deviation

\(S_{{r}}\) :

Degree of saturation

SSA :

Soil specific area

AB:

Alberta

BC:

British Columbia

MN:

Manitoba

NB:

New Brunswick

ON:

Ontario

PE:

Prince Edward Island

QC:

Québec

NS:

Nova Scotia

SK:

Saskatchewan

References

  1. O.T. Farouki, Thermal Properties of Soils (Trans Tech Publications, Clausthal-Zellerfeld, 1986)

    Google Scholar 

  2. O. Johansen, Thermal Conductivity of Soils, Corps of Engineers (U.S. Army, Cold Regions Research and Engineering Laboratory, Hanover, 1977)

    Book  Google Scholar 

  3. G. Bovesecchi, P. Coppa, Basic problems in thermal-conductivity measurements of soils. Int. J. Thermophys. 34, 1962–1974 (2013). https://doi.org/10.1007/s10765-013-1503-2

    Article  ADS  Google Scholar 

  4. G. Bovesecchi, P. Coppa, M. Potenza, A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils. Int. J. Thermophys. 38, 68 (2017). https://doi.org/10.1007/s10765-017-2202-1

    Article  ADS  Google Scholar 

  5. T.S. Yun, J.C. Santamarina, Fundamental study of thermal conduction in dry soils. Granular Matter 10, 197–207 (2008). https://doi.org/10.1007/s10035-007-0051-5

    Article  MATH  Google Scholar 

  6. W.L. Vargas, J.J. McCarthy, Heat conduction in granular materials. AIChE J. 47, 1052–1059 (2001). https://doi.org/10.1002/aic.690470511

    Article  Google Scholar 

  7. V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, Thermal conductivity of standard sands. Part I. Dry-state conditions. Int. J. Thermophys. 30, 949–968 (2009). https://doi.org/10.1007/s10765-009-0596-0

    Article  ADS  Google Scholar 

  8. D.R. Chaudhary, R.C. Bhandari, Heat transfer through a three-phase porous medium. J. Phys. D Appl. Phys. 1, 815–817 (1968). https://doi.org/10.1088/0022-3727/1/6/418

    Article  ADS  Google Scholar 

  9. G.S. Campbell, Soil Physics with BASIC: Transport Models for Soil-Plant Systems (Elsevier, New York, 1985). ISBN 9780080869827

    Google Scholar 

  10. S.X. Chen, Thermal conductivity of sands. J. Heat Mass Transf. 44, 1241–1246 (2008). https://doi.org/10.1007/s00231-007-0357-1

    Article  ADS  Google Scholar 

  11. J. Côté, J.M. Konrad, A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J. 42, 443–458 (2005). https://doi.org/10.1139/t04-106

    Article  Google Scholar 

  12. S. Lu, T. Ren, Y. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71, 8–14 (2007). https://doi.org/10.2136/sssaj2006.0041

    Article  ADS  Google Scholar 

  13. D.A. De Vries, Thermal properties of soils, in Physics of Plant Environment, ed. by W.R. van Wijk (North-Holland, Amsterdam, 1963), pp. 210–235

    Google Scholar 

  14. W. Woodside, J.H. Messmer, Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 32, 1688–1699 (1961). https://doi.org/10.1063/1.1728419

    Article  ADS  Google Scholar 

  15. T. Kasubuchi, T. Momose, F. Tsuchiya, V.R. Tarnawski, Normalized thermal conductivity model for three Japanese soils. Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng. 251, 53–57 (2007). ISSN: 18822789

  16. V.R. Tarnawski, W.H. Leong, A series-parallel model for estimating the thermal conductivity of unsaturated soils. Int. J. Thermophys. 33, 1191–1218 (2012). https://doi.org/10.1007/s10765-012-1282-1

    Article  ADS  Google Scholar 

  17. F. Gori, S. Corasaniti, Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues. Planet. Space Sci. 52, 91–99 (2004). https://doi.org/10.1016/j.pss.2003.08.009

    Article  ADS  Google Scholar 

  18. F. Gori, S. Corasaniti, New model to evaluate the effective thermal conductivity of three-phase soils. Int. Commun. Heat Mass 47, 1–6 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.07.004

    Article  Google Scholar 

  19. S.E. Wood, Analytic model for thermal conductivity (kth) of planetary regolith: uncemented, cohesive or compressed, non-spherical particles, in Proceedings of 44th Lunar and Planetary Science Conference: The Woodlands, Texas, March 18–22 (2013)

  20. V.R. Tarnawski, W.H. Leong, Advanced geometric mean model for predicting thermal conductivity of unsaturated soils. Int. J. Thermophys. 37, 18 (2016). https://doi.org/10.1007/s10765-015-2024-y

    Article  Google Scholar 

  21. J. Sundberg, Thermal properties of soils and rocks. Geologiska Institutionen A57, 1–310 (1988). ISSN: 0348-2367

  22. L.S. Fletcher, Recent developments in contact conductance heat transfer. J. Heat Transf. 110, 1059–1070 (1988). https://doi.org/10.1115/1.3250610

    Article  Google Scholar 

  23. V.R. Tarnawski, T. Momose, M.L. McCombie, W.H. Leong, Canadian field soils III. Thermal-conductivity data and modeling. Int. J. Thermophys. 36, 119–156 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.037

    Article  ADS  Google Scholar 

  24. J. Côté, J.M. Konrad, Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials. Int. J. Heat Mass Transf. 52, 796–804 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.037

    Article  Google Scholar 

  25. V.R. Tarnawski, T. Momose, W.H. Leong, B. Wagner, Performance evaluation of soil thermal conductivity models, in Proceedings of the ASME-ATI-UIT 2010 Conference Thermal and Environmental Issues in Energy Systems, Sorrento, Italy, June 21–23 (2010)

  26. M.S. Kersten, Thermal Properties of Soils. Bullettin 28. University of Minnesota (1949). http://hdl.handle.net/11299/124271

  27. W.C. Krumbein, L.L. Sloss, Stratigraphy and Sedimentation (Freeman and Co., San Francisco, 1956)

    Google Scholar 

  28. M.L. McCombie, V.R. Tarnawski, G. Bovesecchi, P. Coppa, W.H. Leong, Thermal conductivity of pyroclastic soil (Pozzolana) from the environs of Rome. Int. J. Thermophys. 38, 21 (2017). https://doi.org/10.1007/s10765-016-2161-y

    Article  ADS  Google Scholar 

  29. F. Brigaud, G. Vasseur, Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J. Int. 98, 525–542 (1989). https://doi.org/10.1111/j.1365-246X.1989.tb02287.x

    Article  ADS  Google Scholar 

  30. Ch. Clauser, E. Huenges, Thermal conductivity of rocks and minerals, in Rock Physics & Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 105–126 (1995). https://doi.org/10.1029/RF003p0105

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bovesecchi.

Appendix

Appendix

See Table 12.

Table 12 Selected soil minerals and their approximate \(\lambda _{\mathrm{min}}\) values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarnawski, V.R., McCombie, M.L., Leong, W.H. et al. Canadian Field Soils IV: Modeling Thermal Conductivity at Dryness and Saturation. Int J Thermophys 39, 35 (2018). https://doi.org/10.1007/s10765-017-2357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2357-9

Keywords

Navigation