Skip to main content
Log in

Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An advanced geometric mean model for predicting the effective thermal conductivity (\(\lambda \)) of unsaturated soils has been developed and successfully verified against an experimental \(\lambda \) database consisting of 40 Canadian soils, 15 American soils, 10 Chinese soils, four Japanese soils, three standard sands, and one pyroclastic soil (Pozzolana) from Italy (a total of 667 experimental \(\lambda \) entries). Three soil structure-based parameters were used in the model, namely an inter-particle thermal contact resistance factor (\(\alpha \)), the degree of saturation of a miniscule pore space \((s_{\mathrm{r}})\), and the bulk thermal conductivity of soil solids \((\lambda _{\mathrm{s}})\). The \(\alpha \) factor strongly depended on the ratio of \(\lambda _{\mathrm{s}}\) to \(\lambda _{\mathrm{f}}\) (where \(\lambda _{\mathrm{f}}\) is the thermal conductivity of interfacial fluid) and an inter-particle contact coefficient (\(\varepsilon \)) whose value was obtained by reverse modeling of experimental \(\lambda \) data of 40 Canadian soils; the average values of \(\varepsilon \) varied between 0.988 and 0.994 for coarse and fine soils, respectively. In general, \(\varepsilon \) depends on soil compaction, soil specific surface area, and grain size distribution. The use of \(\alpha \) was essential for close \(\lambda \) estimates of experimental data at a low range of degree of saturation \((S_{\mathrm{r}})\). For \(\lambda _{\mathrm{s}}\) estimates obtained from measured \(\lambda \) at soil saturation or a complete soil mineral composition data or experimental quartz content, 69 % of \(\lambda \) predictions were less than \(0.08\, \hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\), 15 % were between \(0.08\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\) and \(0.13\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\), and 13 % were between \(0.13\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\) and \(0.24\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\) with respect to experimental data \((\lambda _{\mathrm{exp}})\). The model gives close \(\lambda \) estimates with an average root-mean-square error (RMSE) of \(0.051\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\) for 22 Canadian fine soils and an average RMSE of \(0.092\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\) for 18 Canadian coarse soils. In general, better \(\lambda \) estimates were obtained for soils containing less content of quartz. Overall, the model estimates were good for all soils at dry state (\(\hbox {RMSE} = 0.050\, \hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\); 22 % of the average \(\lambda _{\mathrm{exp}}\)), saturated state (\(\hbox {RMSE} = 0.090\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\); 5 % of the average \(\lambda _{\mathrm{exp}}\)), soil field capacity (\(\hbox {RMSE} = 0.105\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\); 9 % of the average \(\lambda _{\mathrm{exp}}\)), and satisfactory near a critical degree of saturation, \(S_{\mathrm{r-cr}}\) (\(\hbox {RMSE} = 0.162\,\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\); 26 % of the average \(\lambda _{\mathrm{exp}}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. O.T. Farouki, Thermal Properties of Soils (Trans Tech Publication, Durnten, 1986)

    Google Scholar 

  2. J. Côté, J.M. Konrad, Int. J. Heat Mass Transf. 52, 796 (2009)

    Article  Google Scholar 

  3. V.R. Tarnawski, T. Momose, W.H. Leong, B. Wagner, in Proceedings of the ASME-ATI- UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems, Sorrento, Italy (2010)

  4. W. Woodside, J.H. Messmer, J. Appl. Phys. 32, 1688 (1961)

    Article  ADS  Google Scholar 

  5. D.A. de Vries, Thermal Properties of Soils (Chap. 7), in Physics of Plant Environment, ed. by W.R. van Wijk (North-Holland, Amsterdam, 1963)

    Chapter  Google Scholar 

  6. A.S. Judge, The thermal regime of the Mackenzie Valley. Observations of the natural state. Environmental Social Committee of Northern Pipelines, Report No. 73–38

  7. H. Kiyohashi, M. Deguchi, High Temp. High Press. 30, 25 (1998)

    Article  Google Scholar 

  8. V.R. Tarnawski, T. Momose, M.L. McCombie, W.H. Leong, Int. J. Thermophys. 36, 119 (2015)

    Article  ADS  Google Scholar 

  9. W.O. Smith, Soil Sci. 53, 435 (1942)

    Article  Google Scholar 

  10. R. McGaw, in Effects of Temperature and Heat on Engineering Behavior of Soils. Highway Research Board Special Report, vol. 103, p. 114 (1969)

  11. L.D. Baver, W.H. Gardner, W.R. Gardner, Soil Phys. (Wiley, New York, 1972)

    Google Scholar 

  12. J. Sundberg, Thermal properties of soils and rocks. Geol. Inst. A57, 1–310 (1988)

    Google Scholar 

  13. V.R. Tarnawski, W.H. Leong, F. Gori, G.D. Buchan, J. Sundberg, Int. J. Energy Res. 26, 1345 (2002)

    Article  Google Scholar 

  14. W.H. Leong, V.R. Tarnawski, F. Gori, G.D. Buchan, J. Sundberg, Int. J. Energy Res. 29, 131 (2005)

    Article  Google Scholar 

  15. T.S. Yun, J.C. Santamarina, Granular Matter 10, 197 (2008)

    Article  Google Scholar 

  16. G.A. Narsilio, T.S. Yun, J. Kress, T.M. Evans, IOP Conference Series: Materials Science and Engineering, vol. 10, p. 1 (2010)

  17. Y. Dong, J.S. McCartney, N. Lu, Geotechnol. Geol. Eng. 33, 207 (2015)

    Article  Google Scholar 

  18. K. McInnes, Thermal conductivities of soils from dryland wheat regions in Eastern Washington, MSc thesis, Washington State University (1981)

  19. V.R. Tarnawski, W.H. Leong, Transp. Porous Media 41, 137 (2000)

    Article  Google Scholar 

  20. W.O. Smith, Soil Sci. Soc. Am. Proc. 193(4), 32 (1939)

    Google Scholar 

  21. A.R. Sepaskhah, L. Boresma, Soil Sci. Soc. Am. J. 43, 439 (1979)

    Article  Google Scholar 

  22. V.R. Tarnawski, W.H. Leong, Int. J. Thermophys. 33, 1191 (2012)

    Article  ADS  Google Scholar 

  23. V.R. Tarnawski, T. Momose, W.H. Leong, Int. J. Thermophys. 32, 984 (2011)

    Article  ADS  Google Scholar 

  24. V.R. Tarnawski, M.L. McCombie, W.H. Leong, B. Wagner, T. Momose, J. Schönenberger, Int. J. Thermophys. 33, 843 (2012)

    Article  ADS  Google Scholar 

  25. F. Brigaud, G. Vasseur, Geophys. J. 98, 525 (1989)

    Article  ADS  Google Scholar 

  26. Ch. Clauser, E. Huenges. Rock Physics & Phase Relations: A Handbook of Physical Constants, American Geophysical Union, pp. 105–126 (1995)

  27. J. Schönenberger, T. Momose, B. Wagner, W.H. Leong, V.R. Tarnawski, Int. J. Thermophys. 33, 342 (2012)

    Article  ADS  Google Scholar 

  28. S. Lu, T. Ren, Y. Gong, R. Horton, Soil Sci. Soc. Am. J. 71, 8 (2007)

    Article  Google Scholar 

  29. V.R. Tarnawski, T. Momose, W.H. Leong, Geotechnique 59(4), 331 (2009)

    Article  Google Scholar 

  30. T. Kasubuchi, T. Momose, F. Tsuchiya, V.R. Tarnawski, Transactions of Japanese Society of Irrigation. Drain. Reclam. Eng. 251, 53 (2007)

    Google Scholar 

  31. H. Mochizuki, I. Sakaguchi, M. Inoue, J. Jpn. Soc. Soil Phys. 93, 47–50 (2003)

    Google Scholar 

  32. G.S. Campbell, J.D. Jungbauer Jr, W.R. Bidlake, R.D. Hungerford, Soil Sci. 158(5), 307–313 (1994)

    Article  Google Scholar 

  33. J.W. Hopmans, J.H. Dane, Soil Sci. 142(4), 187–195 (1986)

    Article  Google Scholar 

  34. M.L. McCombie, G. Bovesecchi, P. Coppa, V.R. Tarnawski. Int. J. Thermophys. (submitted 2015)

  35. V.R. Tarnawski, M.L. McCombie, T. Momose, I. Sakaguchi, W.H. Leong, Int. J. Thermophys. 34, 1130 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada and Saint Mary’s University for the funds provided to conduct this research and Mr. Marlon McCombie from Entiuum Energy Systems Inc. and Andra Motion Technologies Inc. (Canada) for his assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlodek R. Tarnawski.

Appendices

Appendix 1: Physical Characteristics and Thermal Conductivities of 40 Canadian Soils [8]

See Appendix Tables 1213.

Table 12 Density, thermal conductivity, grain size distribution of soil solids, and quartz content
Table 13 Porosity and thermal conductivities at various degrees of saturation [8]

Appendix 2: Physical Characteristics and Thermal Conductivities of Ten Chinese Soils [28]

See Appendix Tables 1415.

Table 14 Grain size distribution, porosity, bulk density, thermal conductivity of soil solids, and quartz content
Table 15 Thermal conductivities at various degrees of saturation [28]

Appendix 3: Physical Characteristics and Thermal Conductivities of Four Japanese Soils [30, 31]

See Appendix Tables 1617.

Table 16 Grain size distribution, porosity, thermal conductivity of soil solids, and quartz content
Table 17 Thermal conductivities at various degrees of saturation [30, 31]

Appendix 4: Physical Characteristics and Thermal Conductivities of 15 American Soils

1.1 Five Soils from Eastern Washington (USA) [18]

See Appendix Tables 1819.

Table 18 Grain size distribution, porosity, thermal conductivity of soil solids, and estimated quartz content
Table 19 Thermal conductivities at various water contents [18]

1.2 Nine Soils from Eastern Washington and Alaska (USA) [32]

See Appendix Tables 2021.

Table 20 Grain size distribution, porosity, bulk density, thermal conductivity of soil solids, and quartz content
Table 21 Thermal conductivities at various degrees of saturation [32]

1.3 Thermal Conductivity of Norfolk [33]

See Appendix Tables 2223.

Table 22 Grain size distribution, porosity, bulk density, thermal conductivity of soil solids, and quartz content
Table 23 Thermal conductivities at various degrees of saturation [33]

Appendix 5: Physical Characteristics and Thermal Conductivity of Pozzolana (Italy) [34]

See Appendix Tables 2425 and 26.

Table 24 Grain size distribution, porosity, thermal conductivity of soil solids, and quartz content
Table 25 Mineralogical contents of Pozzolana and their thermal conductivities [34]
Table 26 Thermal conductivities at various degrees of saturation [34]

Appendix 6: Physical Characteristics and Thermal Conductivities of Three Standard Sands [35]

See Appendix Tables 2728.

Table 27 Grain size distribution, thermal conductivity of soil solids, and quartz content
Table 28 Thermal conductivities at various degrees of saturation [35]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarnawski, V.R., Leong, W.H. Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils. Int J Thermophys 37, 18 (2016). https://doi.org/10.1007/s10765-015-2024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-015-2024-y

Keywords

Navigation