Skip to main content
Log in

Thermal Conductivity of Standard Sands. Part I. Dry-State Conditions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A comprehensive thermal conductivity (λ) database of three dry standard sands (Ottawa C-109, Ottawa C-190, and Toyoura) was developed using a transient line heat source technique. The database contains λ data representing a variety of soil compactions and temperatures (T) ranging from 25 °C to 70 °C. The tested standard sands, due to their repeatable physical characteristics, can be used as reference materials for validation of thermal probes applied to similar dry granular materials. The measured data show an increasing trend of thermal conductivity at dryness (λdry) against T in spite of declining quartz λ with T. The air content (porosity) controls the λ of dry sands by acting as a very effective thermal insulator around solid soil particles. As a result, a diminutive increase of λdry with T is driven by increasing λ of air. The experimental λ data of dry sands were exceptionally well predicted by de Vries and Woodside–Messmer models, and also by a thermal conductance model, a product of λ of solids and the thermal conductance factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.T. Farouki, in Thermal Properties of Soils. Series on Rock and Soil Mechanics, vol. 11 (Trans Tech Publication, Clausthal-Zellerteld, 1986)

  2. Momose T., Kasubuchi T. (2002) Eur. J. Soil Sci. 53: 599

    Article  Google Scholar 

  3. M.S. Kersten, in Thermal Properties of Soils (University of Minnesota, Minneapolis, 1949)

  4. Woodside W., Cliffe J.B. (1959) Soil Sci. 87: 75

    Article  Google Scholar 

  5. W.A. Slusarchuk, P.H. Fougler, in Technical Paper No. 388, Division of Building Research, National Research Council of Canada (1973)

  6. F.D. Haynes, D.L. Carbee, D.J. VanPelt, in Special Report 80-83, Cold Regions Research and Engineering Lab, Hanover, NH (1980), p. 33

  7. I. Nikolaev, D.O. Reid, W.H. Leong, M.A. Rosen, in Proceedings of the 21st Canadian Congress of Applied Mechanics (2007), pp. 378–379

  8. Sophocleous M.A. (1979) Water Resources Res. 15: 1195

    Article  ADS  Google Scholar 

  9. T.P. Bligh, E.A. Smith, in EEBS Report No. 26, MIT Joint Program, Energy Efficient Buildings and Systems (1983), pp. 1–275

  10. Moench A.F., Evans D.D. (1977) Soil Sci. Soc. Am. Proc. 34: 377

    Google Scholar 

  11. K.W. Jackson. PhD Thesis (Georgia Institute of Technology, Atlanta, GA, 1980)

  12. Park S.I., Hartley J.G. (1999) J. Appl. Phys. 86: 5263

    Article  ADS  Google Scholar 

  13. S. Corasaniti, G. Pasquali, P. Coppa, in Proceedings of IX A.I.P.T Meeting, Torino (2004), pp. 45–56

  14. Yun T.S., Santamarina J.C. (2008) Granular Matter 10: 197

    Article  MATH  Google Scholar 

  15. Sakaguchi I., Momose T., Kasubuchi T. (2007) Eur. J. Soil Sci. 58: 92

    Article  Google Scholar 

  16. T. Matsushima, K. Konagai, in Geomechanics Proceedings (2001), pp. 361–366.

  17. D.A. de Vries, in Physics of the Plant Environment, ed. by W.R. Wijik (North Holland Publishers, Amsterdam, 1963), pp. 210–235

  18. Ayoubian A., Robertson P.K. (1998) Can. Geotech. J. 35: 351

    Article  Google Scholar 

  19. Oda M., Koishikawa I., Higuchi T. (1978) Soils Found. 18: 25

    Google Scholar 

  20. de Vries D.A., Peck A.I. (1958) Aust. J. Phys. 11: 255–271

    ADS  Google Scholar 

  21. Carslaw H.S., Jaeger J.C. (1959) Conduction of Heat in Solids. Clarendon Press, Oxford

    Google Scholar 

  22. Murakami E.G., Sweat V.E., Sastry S.K., Kolbe E. (1996) J. Food Eng. 30: 209

    Article  Google Scholar 

  23. Shiozawa S., Campbell G.S. (1990) Remote Sens. Rev. 5: 301

    Google Scholar 

  24. A.E. Wechsler, in Compendium of Thermophysical Property Measurement Methods, Recommended Measuring Techniques and Practices, vol. 2, ed. by K.D. Maglić, A. Cezairliyan, V.E. Peletsky (Plenum Press, London, 1992)

  25. Sengers J.V., Watson J.T.R. (1986) J. Phys. Chem. Ref. Data 15: 1291

    ADS  Google Scholar 

  26. Manohar K., Yarbrough D.W., Booth J.R. (2000) J. Test. Eval. 28: 345

    Article  Google Scholar 

  27. International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement (ISO, Geneva, 1995)

  28. S. Brandt, Statistical and Computational Methods in Data Analysis (North Holland Publishers, Amsterdam, 1970)

  29. Clauser C., Huenges E. (1995) Am. Geophys. Union Ref. Shelf 3: 105

    Google Scholar 

  30. O. Johansen. PhD Thesis (University of Trondheim, Trondheim, 1975)

  31. Horai K. (1971) J. Geophys. Res. 76: 1278

    Article  ADS  Google Scholar 

  32. McGaw R. (1969) Highway Research Board Special Report 103: 114

    Google Scholar 

  33. De Vries D.A. (1952) The Thermal Conductivity of Soil. Mededelingen van de Landbouwhogeschool, Wageningen

    Google Scholar 

  34. Woodside W., Messmer J.H. (1961) J. Appl. Phys. 32: 1688

    Article  ADS  Google Scholar 

  35. Eucken A. (1940) Forsch. Geb. Ingenieurwers. 11: 6

    Article  Google Scholar 

  36. Smith W.O., Byers H.G. (1938) Soil Sci. Soc. Am. Proc. 3: 13

    Article  Google Scholar 

  37. Smith W.O. (1942) Soil Sci. 53: 435

    Google Scholar 

  38. D.R. Flynn, T.W. Watson, in 8th Annual Conference on Thermal Conductivity (1969), pp. 913–939

  39. Woodside W., Messmer J.H. (1961) J. Appl. Phys. 32: 1699

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlodek R. Tarnawski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnawski, V.R., Momose, T., Leong, W.H. et al. Thermal Conductivity of Standard Sands. Part I. Dry-State Conditions. Int J Thermophys 30, 949–968 (2009). https://doi.org/10.1007/s10765-009-0596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0596-0

Keywords

Navigation