Skip to main content
Log in

Basic Problems in Thermal-Conductivity Measurements of Soils

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of pozzolanic soil (a fine sandy, unconsolidated, alluvial soil from Lazio, Italy, based on volcanic ash) and blue marlstone rocks (from Alba, Piedmont, north Italy) was measured, using a thermal probe technique, over a wide range of temperatures from \({-}20\,^\circ \mathrm{C}\) to \({+}20\,^\circ \mathrm{C}\). Unfrozen pozzolanic soil thermal-conductivity data display surprisingly low values about 3 to 4 times smaller than water; for frozen soils, the data are just slightly higher than for the unfrozen state but they are still 2 to 3 times lower than for water and seven times lower than for ice. This outcome is probably due to a high internal porosity of individual volcanic ash particles. The influence of the bulk soil porosity on the measured thermal conductivity was found to be rather negligible; the observed slight variation of the thermal conductivity is possibly due to the diverse grain size distribution of soil samples excavated from different depths of the ground. The blue marlstone rock has a considerably higher thermal conductivity than pozzolanic soil, likely due to its very small porosity, consolidated structure, and different implicated minerals. The frozen rock has just about a 30 % higher thermal conductivity than that for the unfrozen state. A temperature-dependent thermal conductivity is observed in the freezing state only. Test results show how heat transfer between the thermal probe and surrounding soil is influenced by storage of heat in the tested material, conduction heat flow, water evaporation due to heating, and finally by vapor diffusion and circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.S. Al-Saud, M.A. El-Kady, R.D. Findlay, Electr. Power Syst. Res. 78, 907 (2008)

    Article  Google Scholar 

  2. R.E.S. Moya, A.T. Prata, J.A.B. Cunha Neto, Int. J. Heat Mass Transf. 42, 2187 (1999)

    Article  Google Scholar 

  3. X. Duan, G.F. Naterer, Int. J. Heat Mass Transf. 52, 2068 (2009)

    Article  MATH  Google Scholar 

  4. C. Gauthier, M. Lacroix, H. Bernier, Sol. Energy 60, 333 (1997)

    Article  Google Scholar 

  5. H. Wang, C. Qi, H. Du, J. Gu, Renew. Energy 35, 727 (2010)

    Article  ADS  Google Scholar 

  6. E. Pulat, S. Coskun, K. Unlu, N. Yamankaradeniz, Energy 34, 1284 (2009)

    Article  Google Scholar 

  7. L. Jun, Z. Xu, G. Jun, Y. Jie, Renew. Energy 34, 2898 (2009)

    Article  Google Scholar 

  8. H. Demir, A. Koyun, G. Temir, Appl. Therm. Eng. 29, 224 (2009)

    Article  Google Scholar 

  9. Y. Nam, R. Ooka, S. Hwang, Energy Build. 40, 2133 (2008)

    Article  Google Scholar 

  10. J. Gao, X. Zhang, J. Liu, K.S. Li, J. Yang, Appl. Therm. Eng. 28, 2295 (2008)

    Article  Google Scholar 

  11. J. Zhao, H. Wang, X. Li, C. Dai, Appl. Therm. Eng. 28, 116 (2008)

    Article  Google Scholar 

  12. G. Gan, S.B. Riffat, C.S.A. Chong, Appl. Therm. Eng. 27, 43 (2007)

    Article  Google Scholar 

  13. A. Hepbasli, O. Akdemir, E. Hancioglu, Energy Convers. Manag. 44, 527 (2003)

    Article  Google Scholar 

  14. J. Nicolas, Ph Andre, J.F. Rivez, V. Debbaut, Rev. Sci. Instrum. 64, 774 (1993)

    Article  ADS  Google Scholar 

  15. M. Hall, D. Allinson, Appl. Therm. Eng. 29, 740 (2009)

    Article  Google Scholar 

  16. M.H. Sharqawy, S.A. Said, E.M. Mokheimer, M.A. Habib, H.M. Badr, N.A. Al-Shayea, Renew. Energy 34, 2218 (2009)

    Article  Google Scholar 

  17. X. Wang, M. Zheng, W. Zhang, S. Zhang, T. Yang, Energy Build. 42, 2104 (2010)

    Article  Google Scholar 

  18. Y. Nassar, A. ElNoaman, A. Abutaima, S. Yousif, A. Salem, Renew. Energy 31, 593 (2006)

    Article  Google Scholar 

  19. S. Krishnaiah, D.N. Singh, Int. Commun. Heat Mass 30, 861 (2003)

    Article  Google Scholar 

  20. K.L. Bristow, G.J. Kluitenberg, C.J. Goding, T.S. Fitzgerald, Comput. Electron. Agric. 31, 265 (2001)

    Article  Google Scholar 

  21. V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, Int. J. Thermophys. 30, 949 (2009)

    Article  ADS  Google Scholar 

  22. W.O. Smith, Soil Sci. 53, 6 (1942)

    Google Scholar 

  23. H.-F. Zhang, X.-S. Ge, H. Ye, D.-S. Jiao, Appl. Therm. Eng. 27, 369 (2007)

    Article  Google Scholar 

  24. V.R. Tarnawski, W.H. Leong, K.L. Bristow, Int. J. Energy Res. 24, 1335 (2000)

    Article  Google Scholar 

  25. F. Gori, S. Corasaniti, J. Heat Transf. 124, 1001 (2002)

    Article  Google Scholar 

  26. F. Gori, S. Corasaniti, Int. J. Thermophys. 24, 1339 (2003)

    Article  Google Scholar 

  27. D.A. de Vries, Soil Sci. 73, 83 (1952)

    Article  Google Scholar 

  28. M. Gustavsson, H. Wang, R.M. Trejo, E. Lara-Curzio, R.B. Dinwiddie, S.E. Gustafsson, Int. J. Thermophys. 27, 1816 (2006)

    Article  ADS  Google Scholar 

  29. Ö. Johansen, Thermal Conductivity of Soils (U.S. Army Cold Region Research and Engineering Laboratory, Hanover, 1977). http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA044002

  30. P. Coppa, G. Pasquali, in Proceedings of 2nd International Symposium on Instrumentation Science and Technology, vol. 1, Jinan, China (2002), p. 486

  31. A.W. Wechsler, Compendium of Thermophysical Property Measurement Methods, vol. 2 (Plenum Press, New York, 1992), p. 161

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bovesecchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bovesecchi, G., Coppa, P. Basic Problems in Thermal-Conductivity Measurements of Soils. Int J Thermophys 34, 1962–1974 (2013). https://doi.org/10.1007/s10765-013-1503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1503-2

Keywords

Navigation