Skip to main content
Log in

A Numerical Model to Explain Experimental Results of Effective Thermal Conductivity Measurements on Unsaturated Soils

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Effective thermal conductivity measurements on unsaturated soils by means of the probe method (thermal conductivity probe, TCP) often present a nonlinear trend of \(\Delta T\) versus ln (\(\tau \)). Three different slopes are present in the plots, while a homogeneous material should present only one. Being soils composite structures made of different phases (solid earth, liquid water and air), a possible explanation is the presence of phenomena other than pure conduction, such as water evaporation and vapor migration through the soil structure. A numerical model based on finite differences has been developed to simulate these phenomena. The model takes into account several factors including heat conduction, heat storage due to thermal capacity, water evaporation and water diffusion through a porous medium. Results show that two of the three slopes can be successfully simulated by the model, confirming the interpretation of the phenomena. However, the third slope from the experimental data is lower than the model’s slope, likely indicating the presence of other phenomena not yet taken into account, such as capillarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Extent of reaction

A :

Fick equation area [\(\hbox {m}^{2}\)]

\(c_\mathrm{p}\) :

Specific heat [\(\hbox {J}\cdot \hbox {kg}^{-1}\cdot \hbox {K}^{-1}\)]

C :

Concentration [\(\hbox {kg}\cdot \hbox {m}^{-3}\)]

Fo:

Fourier number

I :

Electric current [A]

K :

Mass transfer coefficient [\(\hbox {kg}\cdot \hbox {m}^{-2}\cdot \hbox {s}^{-1}\)]

L :

Probe length [m]

m :

Mass [kg]

\({\dot{m}}\) :

Mass flow rate [\(\hbox {kg}\cdot \hbox {s}^{-1}\)]

\(\dddot{q}\) :

Specific thermal power generated or absorbed [\(\hbox {W}\cdot \hbox {m}^{-3}\)]

\({\dot{Q}}\) :

Thermal power [W]

r :

Radius [m]

R :

Heater wire resistance [\(\Omega \)]

\(\Delta R^{*}\) :

Dimensionless grid size

s :

Thickness [m]

S :

External surface of the probe [\(\hbox {m}^{2}\)]

\(\hbox {S}^{{*}}\) :

Free water surface [\(\hbox {m}^{2}\)]

T :

Temperature [\({^{\circ }}\hbox {C}\)]

x :

Volume fraction

\(W_\mathrm{ser}\) :

Weight of the series component

\(\alpha \) :

Thermal diffusivity [\(\hbox {m}^{2}\cdot \hbox {s}^{-1}\)]

\(\delta \) :

Stability criteria

\(\lambda \) :

Thermal conductivity [\(\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\)]

\(\rho \) :

Density [\(\hbox {kg}\cdot \hbox {m}^{-3}\)]

\(\tau \) :

Time [s]

\(\Delta \tau \) :

Time step [s]

\(\varphi \) :

Relative humidity

\(\chi \) :

Humidity ratio [\(\hbox {kg}_{\mathrm {water}} \cdot \hbox {kg}_{\mathrm {dryair}}^{\mathrm {-1}} \)]

\(\psi \) :

Degree of saturation

eq :

Equivalent

f :

Final condition

gas :

Gas phase

liq :

Liquid phase

p :

Relative to probe surface

par :

Parallel

pr :

Probe

sam :

Relative to sample edge

ser :

Series

sol :

Solid phase

vap :

Vapor

0 :

Initial condition

pr:

Probe

FD:

Finite differences

TCP:

Thermal conductivity probe

TGA:

Thermo-gravimetric analysis

References

  1. V.R. Tarnawski, W.H. Leong, B. Wagner, F. Gori, An expert system for estimating soil thermal and transport properties, in Proceedings on ASME—ZSITS International Thermal Science Seminar, pp. 151–156, (2000). doi:10.1615/ICHMT.2000.TherSieProcVol2TherSieProcVol1.200

  2. A.E. Wechsler, in The Probe Method for Measurement of Thermal Conductivity, ed. by K.D. Maglić, A. Cezairliyan, V.E. Peletsky. Compendium of Thermophysical Property Measurement Methods (Springer, US, 1992), pp. 161–185. doi:10.1007/978-1-4615-3286-6_6

  3. P. Coppa, G. Pasquali, Thermal conductivity of lipidic emulsions and its use for production and quality control, in 2nd International Symposium on Instrumentation Science and Technology, Jinan, 18–22 Aug (2002)

  4. G. Bovesecchi, P. Coppa, Basic problems in thermal-conductivity measurements of soils, Int. J. Thermophys. 34(10), 1962–1974 (2013). doi:10.1007/s10765-013-1503-2

  5. S. Corasaniti, G. Pasquali, P. Coppa, Thermal conductivity of Ottawa sand partially and totally saturated with water, in X Convegno Nazionale AIPT, Torino, pp. 45–56 (2004)

  6. V.R. Tarnawsky, D.J. Cleland, S. Corasaniti, F. Gori, R.H. Mascheroni, Extension of soil thermal conductivity models to frozen meats with low and high fat content, Int. J. Refrig. 28(6), 840–850 (2005), doi:10.1016/j.ijrefrig.2005.01.012

  7. V.R. Tarnawski, W.H. Leong, A series-parallel model for estimating the thermal conductivity of unsaturated soils, Int. J. Thermophys. 33(7), 1191–1218 (2012). doi:10.1007/s10765-012-1282-1

  8. J.P. Holmann, Heat Transfer (McGraw-Hill, New York, 2010)

    Google Scholar 

  9. V.R. Tarnawski, T. Momose, W.H. Leong, Thermal conductivity of standard sands II. Saturated conditions, Int. J. Thermophys, 32, 984 (2011). doi:10.1007/s10765-011-0975-1

  10. M.L. McCombie, V.R. Tarnawski, G. Bovesecchi, P. Coppa, W.H. Leong, Thermal conductivity of pyroclastic soil (Pozzolana) from the environs of Rome, Int. J. Thermophys. 38, 21 (2017). doi:10.1007/s10765-016-2161-y

  11. F. Cotana, F. Asdrubali, F. Rossi, Misura della velocità di evaporazione dell’acqua da superfici libere, in 54 \(^{\circ }\) Convegno Nazionale ATI. L’Aquila, vol. 2, pp. 1043–1054 (1999)

  12. A.W. Coats, J.P. Redfern, Thermogravimetric analysis, Analyst. 88, 906–924 (1963). doi:10.1039/AN9638800906

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Bovesecchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bovesecchi, G., Coppa, P. & Potenza, M. A Numerical Model to Explain Experimental Results of Effective Thermal Conductivity Measurements on Unsaturated Soils. Int J Thermophys 38, 68 (2017). https://doi.org/10.1007/s10765-017-2202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2202-1

Keywords

Navigation