Skip to main content

Biosynthesis of Antibiotics by PGPR and its Relation in Biocontrol of Plant Diseases

  • Chapter
PGPR: Biocontrol and Biofertilization

Abstract

Plant growth promoting rhizobacteria (PGPR) play a vital role in crop protection, growth promotion and in the improvement of soil health. Some well known PGPR strains are Pseudomonas, Bacillus, Azospirillum, Rhizobium, and Serratia species. The primary mechanism of biocontrol by PGPR involves the production of antibiotics such as phenazine-1-carboxyclic acid, 2,4-diacetyl phloroglucinol, oomycin, pyoluteorin, pyrrolnitrin, kanosamine, zwittermycin-A, and pantocin. A cascade of endogenous signals such as sensor kinases, N-acyl homoserine lactones and sigma factors regulates the synthesis of antibiotics. The genes responsible for the synthesis of antibiotics are highly conserved. The antibiotics pertain to polyketides, heterocyclic nitrogenous compounds and lipopeptides have broad-spectrum action against several plant pathogens, affecting crop plants. In addition to direct antipathogenic action, they also serve as determinants in triggering induced systemic resistance (ISR) in the plant system. Though antibiotics play a vital role in disease management, their role in biocontrol is questioned due to constraints of antibiotic production under natural environmental conditions. Environmental and other factors that suppress the antimicrobial action of antibiotics have to be studied to exploit the potential of antibiotics of PGPR in crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, A., Morrisey, J. P., Marquez, P. C., Sheehan, M. M., Delany, I. R., and O’Gara, F., 2002, Characterization of interaction between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J. Bacteriol. 184:3008–3016.

    Article  CAS  PubMed  Google Scholar 

  • Aino, M., Maekawa, Y., Mayama, S., and Kato, H., 1997, Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads, in: Plant Growth Promoting Rhizobacteria, Present status and future prospects, A, Ogoshi., K. Kobayashi., Homma, Y., Kodama, F., kondo, N. and Akino, S. (eds.), Sapporo, Jpn., Nakanishi Printing, pp. 120–123.

    Google Scholar 

  • Andersen, J. B., Koch, B., Nielsen, T. H., Sorensen, D., Hansen, M., Nybroe, O., Christophersen, C., Sorensen, J., Molin, S., and Givskov, M., 2003, Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Anjaiah, V., Koedam, N., Nowak-Thompson, B., Loper, J. E., Hofte, M., Tambong, J. T., and Cornelis, P., 1998, Involvemnet of phenazines and anthranilate in the antagonism of Pseudomonas. aeruginosa PNA1 and Tn5 derivatives towards Fusarium spp. and Pythium spp. Mol. Plant-Microb. Interact. 11: 847–854.

    CAS  Google Scholar 

  • Arima, K., Imanaka, I., Kousaka, M., Fukuta, A., and Tamura, G.,1964, Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575–576.

    CAS  Google Scholar 

  • Asaka, O., and Shoda, M., 1996, Biocontrol of R. solani damping off of tomato with B. subtilis RB14. Appl. Environ. Microbiol. 11: 4081–4085.

    Google Scholar 

  • Askeland, R. A., and Morrison, S. M., 1983, Cyanide production by Pseudomonas. fluorescens and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 45: 1802–1807.

    CAS  PubMed  Google Scholar 

  • Audenaert, K., Pattery, T., Cornelis, P., and Hofte, M., 2001, Mechanisms of Pseudomonas. aeruginosa-induced pathogen resistance in plants. In: Chablain, P., Cornelis, P.[eds]. Pseudomonas 2001 Abstracts book. Brussels, Belgium: Vrije Universiteit Brussel, pp 36.

    Google Scholar 

  • Audenaert, K., Pattery, T., Cornelis, P., and Höfte, M., 2002, Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microb. Interact. 15: 1147–1156.

    CAS  Google Scholar 

  • Bangera, M. G., and Thomashaw, L. S., 1996, Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant-Microb. Interact. 9: 83–90.

    CAS  Google Scholar 

  • Banks, R. M., Donald, A. C., Hannan, P. C., O’Hanlon, P. J., and Ragers, N. H., 1998, Antimycoplasmal activities of the pseudomonic acids and structure-activity relationships of monic acid A derivatives. J. Antibiot. 41: 609–613.

    Google Scholar 

  • Baron, S. S., and Rowe, J. J., 1981, Antibiotic action of pyocyanin. Antimicrob Agents. Chemother. 20: 814–820.

    CAS  Google Scholar 

  • Becker, J. O., Heper, C. A., Yuen, G. Y., van Gundy, S. D., Schroth., M. N., Hancock., J. G., Weinhold., A. R., and Bowman, T., 1990, Effect of rhizobacteria and metham-sodium on growth and root microflora of celery cultivars. Phytopathology 80: 206–211.

    CAS  Google Scholar 

  • Bencini, D. A., Howell, C. R., and Wild, J. R., 1983, Production of phenolic metabolites by a soil pseudomonad. Soil Biol. Biochem. 15: 491–492.

    Article  CAS  Google Scholar 

  • Bender, C. L., Rangaswamy, V., and Loper, J. E., 1999, Polyketide production by plantassociated pseudomonads. Annu. Rev. Phytopathol. 37:175–196.

    Article  CAS  PubMed  Google Scholar 

  • Besson, F., and Michel, G., 1987, Isolation and characterization of new iturin: Iturin D and iturin E. J. Antibiot. 40: 437–442

    CAS  PubMed  Google Scholar 

  • Besson, F., and Michel. G., 1992, Biosynthesis of bacillomycin D activating enzymes by the use of affinity chromatography. FEBS Lett. 308: 18–21.

    Article  CAS  PubMed  Google Scholar 

  • Blumer, C., Heeb, S., Pessi, G., and Haas, D., 1999, Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding site. Proc. Natl.Acad. Sci., USA 96: 14073–14078.

    Article  CAS  PubMed  Google Scholar 

  • Burkhead, K. D., Schisler, D. A., and Slininger, P. J., 1994, Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl. Environ. Microbiol. 60: 2031–2039.

    CAS  PubMed  Google Scholar 

  • Calhoun, D. H., Carson., M., and Jensen, R. A., 1972, The branch point metabolic for pyocyanin biosynthesis in Pseudomonas aeruginosa. J. Gen. Microbiol. 72: 581–583.

    CAS  PubMed  Google Scholar 

  • Castric, P., 1994, Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr. Microbiol. 29: 19–21.

    Article  CAS  Google Scholar 

  • Castric, P. A., 1977, Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. J. Bacteriol., 130: 826–831.

    CAS  PubMed  Google Scholar 

  • Chancey, S. T., Wood, D. W., and Pierson, L. S., 1999, Two component transcriptional regulation of N-acyl homoserine lactone production in Pseudomonas aureofaceins. Appl. Environ. Microbiol. 65: 2294–2299.

    CAS  PubMed  Google Scholar 

  • Chang, C. J., 1981, The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas. aureofaceins. J. Antibiot. 24: 555–566.

    Google Scholar 

  • Chernin, L., Brandis, A., Ismailov, Z., and Chet, I., 1996, Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr. Microbiol. 32: 208–212.

    CAS  Google Scholar 

  • Chin A-Woeng, T. F. C., Bloemberg, G. V., and Lugtenberg, B. J. J., 2003, Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503–523.

    CAS  Google Scholar 

  • Chin-A-Woeng, T. F. C, Thomas-Oates, J. E., Lugtenberg, B. J. J., and Bloemberg, G. V., 2001, Introduction of the phzH gene of Pseudomonas chlororaphis PCL 1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. Strains. Mol. Plant-Microbe Interact. 14: 1006–1015.

    CAS  PubMed  Google Scholar 

  • Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon B., Scheffer, R. J., Keel C., Bakker, P. A. H. M., De Bruijn, F. J., Thomas-Oates, J. E., and Lugtenberg, B. J. J., 1998, Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f.sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 10: 79–86.

    Google Scholar 

  • Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Aelst, A. C. van Rombouts, F. M., and Abee, T., 2003, An antifungal compound produced by B. subtilis YM 10-20 inhibits germination of Penicillium. roqueforti conidiospores. J. Appl. Microbiol. 94: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu, F., 2001, Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31: 17–23.

    Google Scholar 

  • Cook, R.J., and Baker, K. F., 1983, The nature and practice of biological control of plant pathogens. APS Press, St. Paul.

    Google Scholar 

  • Cronin, D., MoenneLoccoz, Y., Fenton, A., Dunne, C., Dowling, D.N., and O’Gara., F., 1997, Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol. 63: 1357–1361.

    CAS  Google Scholar 

  • Cuppels, D. A., Howell, C. R., Stipanovic, R. D., Stossel, A., and Stothers, J. B., 1986, Biosynthesis of pyoluteorin: a mixed polyketide-tricarboxylic acid cycle origin demonstrated by [1,2-13C2] acetate incorporation. Z. Naturforsch. 41: 532–536.

    CAS  Google Scholar 

  • de Souza, J., and Raaijmakers, J. M., 2003, Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS. Microbiol.Ecol. 43: 21–34.

    Google Scholar 

  • de Souza, J., Arnould, C., Deulvot, C., Lamanceau, P., Pearson, V. G., and Raaijmakers, J. M., 2003, Effect of 2,4 diacetyl phloro glucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93: 966–975.

    Google Scholar 

  • Delaney, S. M., Mavrodi, D. V., Bonsall, R. F., and Thomashow, L. S., 2001, phzO, a gene for biosynthesis of 2-hydroxylate phenazine compounds in Pseudomonas auerofacines 30–84. J. Bacteriol. 183: 5376–5384.

    Article  Google Scholar 

  • Delany, I., Sheenan, M. M., Fenton, A., Bardin, S., Aarons, S., and O’Gara, F., 2000, Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146: 537–543.

    CAS  PubMed  Google Scholar 

  • Duffy, B. K., and Défago, G., 1997, Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87: 1250–1257.

    CAS  Google Scholar 

  • Duffy, B. K., and Défago, G., 1999, Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429–2438.

    CAS  PubMed  Google Scholar 

  • Duville, Y., and Boland, G. L., 1992, A note on the antibiotic properties of B. subtilis against Colletotrichum trifoli. Phytoprotection 73: 31–36.

    Google Scholar 

  • Elander, R. P., Mabe, J. A., Hamill, R. H., and Gorman, M., 1968, Metabolism of tryptophans by Pseudomonas aureofaceins. VI. Production of pyrrolnitrin by selected Pseudomonas spp. Appl. Environ.Microbiol. 16: 753–758.

    CAS  Google Scholar 

  • Elasri, M., Delorme, S., Lamanceau, P., Stewart. G., Laue, B., Glickmann, E., Oger, P. M., and Dessaux., Y., 2001, Acyl — homoserine lactone production is more common among plant — associated Pseudomonas spp. Appl. Environ. Microbiol. 67: 1198–1209.

    Article  CAS  PubMed  Google Scholar 

  • El-Banna, N., and Winkelmann, G., 1988, Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol. 85: 69–78.

    Google Scholar 

  • Elizabeth, A. S., Milner, J. L., and Handelsman, J., 1999, Zwittermicin A biosynthetic cluster. Gene. 237: 430–411.

    Google Scholar 

  • Emmert, B. A. E., Klimowicz, K. A., Thomas, G. M., and Handelsman, J., 2004, Genetics of zwittermicin A production by Bacillus cereus. Appl. Environ. Microbiol. 70:104–113.

    Article  CAS  PubMed  Google Scholar 

  • Eshita, S. M., Roberto, N. H., Beale, J. M., Mamiya, B. M., and Workman, R. F., 1995, Bacillomycin L a new antibiotic of the iturin group: isolation, structures and antifungal activities of the congeners. J. Antibiot. 48: 1240–1247.

    CAS  PubMed  Google Scholar 

  • Fenton, A. M., Stephens, P. M., Crowley, J., Ocallaghan, M., and O’Gara, F., 1992, Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58: 3873–3878.

    CAS  PubMed  Google Scholar 

  • Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., and Savchuk, S., 2004, Identification and use of bacterial organic volatiles in biological control of Sclerotinia. sclerotiorum. Soil Biol. Biochem. 36 (in press)

    Google Scholar 

  • Fravel, D. R., 1988, Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26: 75–91.

    CAS  Google Scholar 

  • Fuller, A. T., Mellows, G., Woolford, M. Banks, G. T., Barrow, K. D., and Chain, E. B., 1971, Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234: 416–417.

    Article  CAS  PubMed  Google Scholar 

  • Fuqua, W. C., Winans, S. C., and Greenberg, E. P., 1994, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269–275.

    CAS  PubMed  Google Scholar 

  • Gamard, P., Sauriol, F., Benhamou, N., Belanger, R. R., and Paulitz, T. C., 1997, Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63-28. J. Antibiot. 50: 742–749.

    CAS  PubMed  Google Scholar 

  • Gealy, D. R., Gurusiddaiah, S., and Ogg, A. G., 1996, Isolation and characterization of metabolites from Pseudomonas syrigae strain 3366 and their phytotoxicity against certain weed and crop species. Weed Science 44: 383–392.

    CAS  Google Scholar 

  • Georgakopoulos, D., Hendson, M., Panopoulos, N. J., and Schroth, M. N., 1994, Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl. Environ. Microbiol. 60: 2931–2938.

    CAS  PubMed  Google Scholar 

  • Gerard, J., R., Lloyd, T., Barsby, P., Haden, M., Kelly, T., and Andersen, R. J., 1997. Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J. Nat. Prod. 60: 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Giacomodonato, M. N., Pettinari, M. J., Souto, G. I., Mendez, B. S., and Lopez, N. I., 2001, A PCRbased method for the screening of bacterial strains with antifungal activity in suppressive soybean rhizosphere. World J. Microbiol. Biotech. 17: 51–55.

    CAS  Google Scholar 

  • Givskov, M., Östling, J., Eberl, L., Lindum, P., Christensen, A. B., Christiansen, G., Molin, S., and Kjelleberg, S., 1998, Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 742–745.

    CAS  PubMed  Google Scholar 

  • Haas, D., and Keel, C., 2003, Regulation of antibiotic production in root colonizing Pseudomonas spp., and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 79: 117–153.

    Google Scholar 

  • Haas, D., Blumer, C., and Keel, C., 2000, Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotechnol. 11: 209–297.

    Article  Google Scholar 

  • Hamill, R. L., Elander, R. P., Mabe, J. A., and Goreman, M., 1970, Metabolism of tryptophans by Pseudomonas aureofaceins V. Conversion of tryptophan to pyrrolnitrin. Appl. Environ. Microbiol. 19: 721–725.

    CAS  Google Scholar 

  • Hammer, P. E., Hill, D. S., Lam, S. T., van Pee, K. H., and Ligon, J. M., 1997, Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147–2154.

    CAS  PubMed  Google Scholar 

  • Hammer, P. E., and Evensen, K. B., 1993, Post harvest control of Botrytis cinerea on cut flowers with pyrrolnitrin. Plant Dis. 77: 283–286.

    CAS  Google Scholar 

  • Hammer, P. E., Burd, W., Hill, D. S., Ligon, J. M., and van Pee, K.H., 1999, Conservation of the pyrrolnitrin gene cluster among six pyrrolnitrin-producing strains. FEMS Microbiol. Lett. 180: 39–44.

    CAS  PubMed  Google Scholar 

  • Hassett, D. J., Woodruff, W. A., Wozniak, D. J., Vasil, M. L., Cohen, M. S., and Ohman, D. E., 1993, Cloning of sodA and sodB genes encoding manganese and iron superoxide dismutase in Pseudomonas aeruginosa: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J. Bacteriol. 175: 7658–7665.

    CAS  PubMed  Google Scholar 

  • Hassett, D.J., Charniga, L., Bean, K., Ohman, D. E., and Cohen, M. S., 1992, Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of manganese-cofactored superoxide dismutase. Infection and Immunity 60: 328–336.

    CAS  PubMed  Google Scholar 

  • He, H., Silo-Suh, L. A., Handelsman, J., and Clardy, J., 1994, ZwittermicinA, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499–2502.

    CAS  Google Scholar 

  • Heeb, S., and Haas, D., 2001, Regulatory roles of GacS-GacA two component system in plant associated and other Gram-negative bacteria. Mol. Plant-Microb. Interact. 14: 1351–1363.

    CAS  Google Scholar 

  • Henriksen, A., Anthoni, U.,. Nielsen, T. H., Sørensen, J., Christophersen, C., and Gajhede, M., 2000, Cyclic lipoundecapeptide Tensin from Pseudomonas fluorescens strain 96.578. Acta Crystallogr. C 56: 113–115.

    Google Scholar 

  • Hiradate, S., Yoshida, S., Sugie, H., Yada, H., and Fujii, Y., 2002, Mulberry anthracnose antagonists (iturin) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693–698.

    Article  CAS  PubMed  Google Scholar 

  • Hokeberg, M., Wright, S. A. I., Svensson, M., Lundgren, L. N., and Gerhardson, B., 1998, Mutants of Pseudomonas chlororaphis defective in the production of an antifungal metabolite express reduced biocontrol activity. Abstract Proceedings ICPP98, Edinburgh, Scotland.

    Google Scholar 

  • Homma, Y., Sato, Z., Hirayama, F., Konno, K., Shirahama, H., and Suzui. T.,1989, Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21:723–728.

    CAS  Google Scholar 

  • Howell, C. R., and Stipanovic, R. D., 1979, Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.

    CAS  Google Scholar 

  • Howell, C. R., and Stipanovic, R. D., 1980, Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715.

    CAS  Google Scholar 

  • Howie, W. J., and Suslow, T. V., 1991, Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol. Plant-Microb. Interact. 4: 393–399.

    CAS  Google Scholar 

  • Hughes, J., and Mellows, G., 1980, Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochemistry Journal 191: 209–219.

    CAS  Google Scholar 

  • Ingledew, W. M., and Campbell, J. J. R., 1969, Evaluation of shikimic acid as a precursor of pyocyanin. Can. J. Microbiol. 15: 535–541.

    CAS  PubMed  Google Scholar 

  • Janisiewicz, W. J., and Roitman, J., 1988, Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78: 1697–1700.

    Google Scholar 

  • Jiao, Y., Yoshihara, T., Ishikuri, S., Uchino, H., and Ichihara, A., 1996, Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett. 37: 1039–1042.

    Article  CAS  Google Scholar 

  • Kajimura, Y., Sugiyama, M., and Kaneda, M., 1995, Bacillopeptins, a news cyclic lipopetide antibiotics from B. subtilis FR-2. J. Antibiot. 48: 1095–1103.

    CAS  PubMed  Google Scholar 

  • Kang, Y. W., Carlson, R., Tharpe, W., and Schell, M. A., 1998, Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64: 3939–3947.

    CAS  PubMed  Google Scholar 

  • Katz, E., and Demain, A. L., 1977, The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449–474.

    CAS  PubMed  Google Scholar 

  • Katz, L., and Donadio, S., 1993, Polyketide synthesis: Prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47: 875–912.

    Article  CAS  PubMed  Google Scholar 

  • Kavitha, K., Nakkeeran, S., Chandrasekar, G., Fernando, W. G. D., Mathiyazhagan, S., Renukadevi, P., and Krishnamoorthy, A. S., 2003, Role of Antifungal Antibiotics, Siderophores and IAA production in biocontrol of Pythium aphanidermatum inciting damping off in tomato by Pseudomonas chlororaphis and Bacillus subtilis. In proceedings of the 6th International workshop on PGPR, Organised by IISR, Calicut 5–10 October, 2003, pp. 493–497.

    Google Scholar 

  • Keel, C., Schiner, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D., and Defago, G., 1992, Suppression of root diseases by Pseudomonas. fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5: 4–13.

    CAS  Google Scholar 

  • Keel, C., Weller, D. M., Natsch, A., Défago, G., Cook, R. J., and Thomashow, L. S., 1996, Conservation of the 2,4-diacetylphloroglycinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol. 62:552–563.

    CAS  PubMed  Google Scholar 

  • Keel, U. S., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Bonnefoy, C. G., Reimmann, C., Notz, R., Défago, G., Haas, D., and Keel, C., 2000, Autoinduction of 2, 4-Diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 182:1215–1225.

    PubMed  Google Scholar 

  • Kim, B. S., Lee, J. Y., and Hwang, B. K., 2000, In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manage. Sci. 56: 1029–1035.

    Article  CAS  Google Scholar 

  • Kitten, T., Kinscherf, T., McEvoy, G., and Willis, D. K., 1998, A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28:917–929.

    Article  CAS  PubMed  Google Scholar 

  • Koch, B., Nielsen, T. H., Sorensen, D., Andersen, J. B., Christophersen, C., Molin, S., Givskov, M., Sorensen, J., and Nybroe, O., 2002, Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet exudates via the Gac twocomponent regulatory system. Appl. Environ. Microbiol. 68: 4509–4516

    Article  CAS  PubMed  Google Scholar 

  • Kojic, M., and Venturi, V., 2001, Regulation of rpoS Gene Expression in Pseudomonas: Involvement of a TetR Family Regulator. J. Bacteriol. 183: 3712–3720.

    Article  CAS  PubMed  Google Scholar 

  • Kowall, M. J., Vastes, J., Kluge, B., Stein, T., Franke, P., and Ziessow, D., 1998, Separation and characterization of surfactin isoforms produced by B. subtilis OKB 105. J. Colloid Interface Sci. 203: 1–8.

    Google Scholar 

  • Lampis, G., Deidda, D., Maullu, C., Petruzzelli, S., and Pompei, R., 1996, Karalicin, a new biologically active compound from Pseudomonas fluorescens/putida. I. Production, isolation, physico-chemical properties and structure elucidation. J. Antibiot. 49: 260–262.

    CAS  PubMed  Google Scholar 

  • Lange, R., Fischer, D. and Hengge-Aronis, R. 1995. Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 177: 4676–4680.

    CAS  PubMed  Google Scholar 

  • Lee, J. Y., Moon, S. S. and Hwang, B. K. 2003. Isolation and Antifungal and Antioomycete Activities of Aerugine Produced by Pseudomonas fluorescens Strain MM-B16. Appl. Environ. Microbiol. 69: 2023–2021.

    CAS  PubMed  Google Scholar 

  • Leeman, M., van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. and Schippers B. 1995. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021–1027.

    CAS  Google Scholar 

  • Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H. J. and van Pee, K.H. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest. Manage. Sci. 56: 688–695.

    Article  CAS  Google Scholar 

  • Lindum, P., Anthoni, U., Christophersen, C., Eberl, L., Molin, S., and Givskov, M., 1998, NAcyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384–6388.

    CAS  PubMed  Google Scholar 

  • Liu, M. Y., and Romeo, T., 1997, The global regulator CsrA of Escherichia coli is a specific mRNA binding protein. J. Bacteriol. 177: 2663–2672.

    Google Scholar 

  • Ma, W., Chui, Y., Liu, Y., Dunenyo, C. K., Mukherjee, A., and Chaterjee, A. K., 2001, Molecular characterization of global regulatory RNA species that control pathogenecity factors in Erwinia amylovora and Erwinia herbicola pv. Gypsophilae, J. Bacteriol. 183:1870–1880.

    CAS  PubMed  Google Scholar 

  • Mackie, A. E., and Wheatley, R. E., 1999, Effects of the incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol. Biochem. 31:375–385.

    Article  CAS  Google Scholar 

  • Marahiel, M. A., Stacelhaus, T., and Mootz, H. D., 1997, Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97: 2651–2673.

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer, M., Baehler, E., Notz, R., Martinez, V., and Keel, C., 2004, Cross talk between 2,4-Diacetylphloroglucinol — producing biocontrol pseudomonads on wheat roots. Appl. Environ. Microbiol. 70:1990–1998.

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D., and Defago G., 1992, Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190–195.

    CAS  Google Scholar 

  • Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M., and Thomashow, L. S., 1998, A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J. Bacteriol. 180: 2541–2548.

    CAS  PubMed  Google Scholar 

  • Mavrodi, D.V., Bleimling, N., Thomashow, L.S., and Blankenfeldt, W., 2004, The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway from Pseudomonas fluorescens 2–79. Acta Crystallogr D Biol Crystallogr. 60:184–186.

    PubMed  Google Scholar 

  • Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M., and Thomashow, L. S., 2001, Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91: 35–43.

    CAS  Google Scholar 

  • Mazzola, M., Cook, R. J., Thomashow, L. S, Weller, D. M., and Pierson, L. S., 1992, Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58: 2616–2624.

    CAS  PubMed  Google Scholar 

  • McDonald, M., Mavrodi, D. V., Thomashow, L. S., and Floss, H. G., 2001, Phenazine biosynthesis in Pseudomonas fluorescens: Branchpoint from the primary shilimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Amer. Chem. Socie. 123: 9459–9460.

    CAS  Google Scholar 

  • McLoughlin, T. J., Quinn, J. P., Betterman, A., and Bookland, R., 1992, Pseudomonas fluorescens suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58: 1760–1763.

    CAS  PubMed  Google Scholar 

  • McSpadden Gardener, B. B., Mavrodi, D. V., Thomashow, L. S., and Weller, D. M., 2001, A rapid polymerase chain reaction-based assay for characterizing rhizosphere populations of 2, 4-Diacetylphloroglucinol-producing bacteria. Phytopathology 91: 44–54.

    CAS  Google Scholar 

  • McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S., and Weller, D. M., 2000, Genotypic and phenotypic diversity of phlDcontaining Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66:1939–1946..

    Article  CAS  PubMed  Google Scholar 

  • Miller, C. M., Miller, R. V., Kenny, D. G., Redgrave, B., Sears, J., Condron, M. M., Teplow, D.B., and Strobel, G.A., 1998, Ecomycins, unique antimycotics from Pseudomonas viridiflava. J. Appl. Microbiol. 84: 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Milner, J. L., Silo-Suh, L., Lee, J. C., He, H. Y., Clardy, J., and Handelsman, J., 1996, Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62: 3061–3065.

    CAS  PubMed  Google Scholar 

  • Moyne, A. L., Shalby, R., Cleveland, T. E., and Tuzun, S., 2001, Bacillomycin, D, an iturin with antifungal activity against Aspergillus flavus.. J. Appl. Microbiol. 90: 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, H., Sato, B., Fujita, T., Takase, S., Terano, H., and Okuhara M., 1996, New antitumor substances, FR901463, FR901464 and FR90 1465. I. Taxonomy, fermentation, isolation, physicochemical properties and biological activities. J. Antibiot. 49: 1196–1203.

    CAS  PubMed  Google Scholar 

  • Nakatsu, C. H., Straus, N. A., and Wijndham, C., 1995, The nucleotide sequence of the TN6271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141: 485–495.

    CAS  PubMed  Google Scholar 

  • Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., and Tahara, S., 1999, Possible role of xanthobaccins produced by Stenotrophomonas sp strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 55: 4334–4339.

    Google Scholar 

  • Nakkeeran, S., Kavitha, K., Mathiyazhagan, S., Fernando, W.G.D., Chandrasekar, G., and Renukadevi, P., 2004, Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L.). Can. J. Plant Pathol. 26: 417–418

    Google Scholar 

  • Nielsen, M. N., Sorensen, J., Fels, J., and Pedersen, H. C., 1998, Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64: 3563–3569.

    CAS  PubMed  Google Scholar 

  • Nielsen, T. H., Christophersen, C., Anthoni, U., and Sorensen, J., 1999, Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 86: 80–90.

    Google Scholar 

  • Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U., and Sorensen, J., 2000, Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89: 992–1001.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M., and Sorensen, J., 2002, Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 68: 3416–3423.

    CAS  PubMed  Google Scholar 

  • Nishida, M., Matsubara, T., and Watanabe, N., 1965, Pyrrolnitrin, a new antifungal antibiotic. Microbiological and toxicological observations. J. Antibiot. 18: 211–219.

    CAS  PubMed  Google Scholar 

  • Notz, R., Maurhofer, M., Dubach, H., Haas, D., and Défago, G., 2002, Fusaric acid producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthesis gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of the wheat. Appl. Environ. Microbiol. 68: 2229–2235.

    Article  CAS  PubMed  Google Scholar 

  • Notz, R., Maurhofer, M., Schnider-Keel, U., Duffy, B., Haas, D., and Défago, G., 2001, Biotic factors affecting expression of the 2,4-diacetylpholoroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91: 873–881.

    CAS  Google Scholar 

  • Nowak-Thompson, B., Chaney, N., Wing, J. S., Gould, S. J., and Loper, J. E., 1999, Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181:2166–2174.

    CAS  PubMed  Google Scholar 

  • Nowak-Thompson, B., Gould, S. J., Kraus, J., and Loper, J., 1994, Production of 2,4-Diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40:1064–1066.

    CAS  Google Scholar 

  • Ownley, B. H., Weller, D. M., and Thomashow. L. S., 1992, Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. Phytopathology 82:178–184.

    CAS  Google Scholar 

  • Peypoux, F., Marion, D., Maget Dana, R., Ptak, M., Das, B. C., and Michel, G., 1985, Structure of bacillomycin, F., a new peptidolipid antibiotic of the iturin group. Eur. J. Biochem. 153: 335–340.

    Article  CAS  PubMed  Google Scholar 

  • Picard, C., Di Cello, F., Ventura, M., Fani, R., and Gluckert. A., 2000, Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948–955.

    CAS  PubMed  Google Scholar 

  • Pierson, L. S., Wood, D. W., Pierson, E. A., and Chancey, S. T., 1998, N-acyl homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur. J. Plant Pathol. 104: 1–9.

    CAS  Google Scholar 

  • Pierson, L. S., Gaffney, T., Lam, S., and Gong, F., 1995, Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiological Lett. 134: 299–307.

    CAS  Google Scholar 

  • Pierson, L.S., III, and Pierson, E.A., 1996, Phenazine antibiotic production on Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol. Lett. 136: 101–108.

    CAS  Google Scholar 

  • Raaijmakers, J., Bonsall, R. F., and Weller, D. M., 1999, Effect pf population density of Pseudomonas fluorescens on production of 2, 4-Diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470–475.

    CAS  Google Scholar 

  • Raaijmakers, J. M., Weller, D. M., and Thomashow, L. S., 1997, Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881–887.

    CAS  Google Scholar 

  • Raffel, S. J., Stabb, E. V., Milner, J. L., and Handelsman, J., 1996, Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology 142: 3425–3436.

    CAS  PubMed  Google Scholar 

  • Ramarathnam, R., and Fernando, W. G. D., 2004, Polymerase chain reaction-based detection of antibiotics produced by bacterial biocontrol agents of the blackleg pathogen Leptosphaeria maculans of canola. Canadian J. Plant Pathol. 26: 421.

    Google Scholar 

  • Romeo, T., 1998, Global regulation by the small RNA binding protein CsrA and non-coding RNA molecule CsrB. Mol. Microbiol. 29:1321–1330.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, E., and E. Z. Ron., 1999, High-and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52:154–162.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W., 2003a, Bacterial volatiles promote growth in Arabidopsis. Proc. Nation. Acad. Sci. 100: 4927–4932.

    CAS  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W., 2003b, Volatiles produced by PGPR elicit plant growth promotion and induced resistance in Arabidopsis. Proceedings of the 6th International Workshop on Plant Growth Promoting Rhizobacteria. pp.436–443.

    Google Scholar 

  • Sacherer, P., Défago, G., and Haas, D., 1994, Extracellular protease and phosholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett. 116:155–160.

    CAS  PubMed  Google Scholar 

  • Savchuk, S., and Fernando, W. G. D., 2004, Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol. Ecol. 49: 379–388.

    CAS  Google Scholar 

  • Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Defago, G., Haas, D., and Keel, C., 2000, Autoinduction of 2,4-Diacetyl phloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHAO and repression by the bacteria lmetabolites salicylate and pyoluteorin. J. Bacteriol. 182:1215–1225.

    Article  CAS  PubMed  Google Scholar 

  • Seow, K. T., Meurer, G., Gerlitz, M., Wendt-Pienkowski, E., Hutchinson, C. R., and Davies, J., 1997, A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J. Bacteriol. 179: 7360–7368.

    CAS  PubMed  Google Scholar 

  • Shanahan, P., Borro, A., O’Gara, F., and Glennon, J. D., 1992a, Isolation, trace enrichment and liquid chromatographic analysis of diacetylphloroglucinol in culture and soil samples using UV and amperometric detection. J. Chromatogr. 606:171–177.

    Article  CAS  Google Scholar 

  • Shanahan, P., O’sullivan D. J., Simpson, P., Glennon, J.,D., and O’Gara, F., 1992b, Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353–358.

    CAS  PubMed  Google Scholar 

  • Sharifi-Tehrani, A., Zala, M., Natsch, A., Moenne-Loccoz, Y., and Defago, G., 1998, Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol. 104: 631–643.

    Article  CAS  Google Scholar 

  • Shoji, J., Hinoo, H., Kato, T., Hattori, T., Hirooka, K., Tawara, K., Shiratori, O., and Yoshihiro, T., 1990, Isolation of cepafungins I, II and III from Pseudomonas species. J. Antibiot. 43:783–787.

    CAS  PubMed  Google Scholar 

  • Shoji, J., Hinoo, H., Terui, Y., Kikuchi, J., Hattori, T., Ishii, K., Matsumoto, K., and Yoshida. T., 1989, Isolation of azomycin from Pseudomonas fluorescens. J. Antibiot. 42: 1513–1514.

    CAS  PubMed  Google Scholar 

  • Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J., 1994, Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023–2030.

    CAS  PubMed  Google Scholar 

  • Silo-suh, L. A., Stab, V. E., Raffel, S.R., and Handelsman, J., 1998, Target range of Zwittermicin A, an Aminopolyol antibiotic from Bacillus cereus. Curr. Microbiol. 37: 6–11.

    CAS  PubMed  Google Scholar 

  • Slininger, P. J., and Jackson, M. A., 1992, Nutrtional factors regulating growth and accumulation of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotech. 37: 388–392.

    Article  CAS  Google Scholar 

  • Smirnov, V. V., and. Kiprianova. E. A., 1990, Bacteria of Pseudomonas genus, Naukova Dumka, Kiev, Ukraine. [Translation by D. V. Mavrodi.] pp. 100–111.

    Google Scholar 

  • Smith, K. P., Havey M. J., and Handelsman, J., 1993, Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis. 77:139–142.

    Google Scholar 

  • SooJeong, C, Sang Ryeol, P., Minkeun, K., Woojin. L., Sungkee, R., Changlong, A., Suyoung. H., Younghan, L., Seoncii, J., Yong un, C., and HanDae. Y., 2002, Endophytic Bacillus sp. isolated from the interior of balloon flower root. Biosci. Biotech. Biochem. 66:1270–1275.

    Google Scholar 

  • Sorensen, D., Nielsen, T. H., Christophersen, C., Sorensen, J., and Gajhede, M., 2001, Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr. C 57:1123–1124.

    CAS  Google Scholar 

  • Stohl, E.A., Brady, S. F., Clardy, J., and Handelsman, J., 1999, ZmaR, a novel and widespresd antibiotic resistance determinant that acetylates zwittermycin A. Appl. Environ. Microbiol. 181: 5455–5460.

    CAS  Google Scholar 

  • Stover, C. K., Pham, X. Q., Erwin, A. L., Mizogughi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagro, U. M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Womg, G.K., Wu, Z., and Paulsen, I.T., 2000, Complete genome sequence of Pseudoonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959–964.

    CAS  PubMed  Google Scholar 

  • Sutherland, R., Boon, R.J., Griffin, K.E., Masters, P.J., Slocombe, B., and White, A.R., 1985, Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27:495–498.

    CAS  PubMed  Google Scholar 

  • Takeda, R., 1958, Pseudomonas pigments. I. Pyoluteorin, a new chlorine-containing pigment produced by Pseudomonas aeruginosa. Hako Kogaku Zasshi 36: 281–290.

    CAS  Google Scholar 

  • Takesako, K., Kuroda, H., Inoue, T., Haruna, F., Yoshikawa, Y., Kato, I., Uchida, K., Hiratani, T., and Yamaguchi, H., 1993, Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 46:1414–1420.

    CAS  PubMed  Google Scholar 

  • Tambong, J.T., and Hofte, M., 2001, Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur. J. Plant Pathol. 107: 511–521.

    Article  CAS  Google Scholar 

  • Tazawa, J., Watanabe, K., Yoshida, H., Sato, M., and Homma, Y., 2000, Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorg. 54: 61–67.

    Google Scholar 

  • Thomashow, L. S., and Weller, D. M., 1995, Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites, in: Plant-Microbe Interactions, Chapman and Hall, Stacey, G. and Keen, N.T., eds., New York, pp. 187–235.

    Google Scholar 

  • Thomashow L. S., and Weller, D. M., 1988, Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499–3508.

    CAS  PubMed  Google Scholar 

  • Thomashow, L. S., and Weller, D. M., 1996, Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites, in: Plant-Microbe Interactions, Stacey G & Keen NT, ed., Chapman & Hall, New York, pp. 187–236.

    Google Scholar 

  • Thomashow, L. S., Bonsall, R. F., and Weller, D. M., 1997, Antibiotic production by soil and rhizosphere microbes in situ, in: Manual of Environmental Microbiology. Hurst, C. J., Knudsen, G. R., McInerney M. J., Stetzenbach, L. D. & Walter, M. V., ed., ASM Press, Washington DC, pp. 493–499.

    Google Scholar 

  • Thomashow, L. S., Weller, D. M., Bonsall, R. F., Pierson, L.S.III., 1990, Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908–912.

    CAS  PubMed  Google Scholar 

  • Thrane, C., Nielsen, T. H. Nielsen, M. N., Olsson, S., and Sorensen, J., 2000, Viscosinamide-producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol. Ecol. 33:139–146.

    CAS  PubMed  Google Scholar 

  • Tsuge, K., Akiyama, T., and Shoda, M., 2001, Cloning, sequencing and characterization of the Iturin A operon. J. Bacteriol. 183: 6265–6273.

    CAS  PubMed  Google Scholar 

  • Turner, J. M., and Messenger, A. J., 1986, Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microbial Physiol. 27: 211–275.

    CAS  Google Scholar 

  • van Pee, K. H., Salcher, O., and Lingens, F., 1980, Formation of pyrrolnitrin and 3-(2-amino-3-chlorophenyl)pyrrolefrom 7-chlorotryptophan. Angew Chem Int Ed Engl. 19: 828.

    Google Scholar 

  • Voisard, C., Bull, C. T., Keel, C., Laville, J., Maurhofer, M., Schnider, U., Défago, G., and Haas, D., 1994, Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches, in: Molecular ecology of rhizosphere microorganisms. F. O’Gara, D. N. Dowling, and B. Boesten ed., VCH, Weinheim, Germany, pp. 69–89.

    Google Scholar 

  • Voisard, C., Keel, C., Haas, D., and Defago, G., 1989, Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351–358.

    CAS  Google Scholar 

  • Vollenbroich, D., Özel, M., Vater, J., Kamp, R. M., and Pauli, G., 1997, Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25: 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Volpon, H., Besson, F., and Lancelin, J. M., 2000, NMR structure of antibiotics plipastations A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS 485:76–80.

    Article  CAS  Google Scholar 

  • Volpon, L. Besson, F., and Lancelin, J. M., 1999, NMR structure of active and inactive forms of the sterol dependent antibiotic bacillomycin L. Eur. J. Bioche. 264: 200–210.

    CAS  Google Scholar 

  • Whatling, C. A., Hodgson, J. E., Burnham, M. K. R., Clarke, N. J., Franklin F. C. H., and Thomas, C. M., 1995, Identification of a 60 kb region of the chromosome of Pseudomonas fluorescens NCIB 10586 required for the biosynthesis of pdeudomonic acid (mupirocin). Microbiology 141: 973–982.

    CAS  Google Scholar 

  • Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N., and Salmond, G. P. C., 2001, Quorum sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 25: 365–404.

    CAS  PubMed  Google Scholar 

  • Whitman, W. B., Coleman, D. C., and Wiebe, W. J., 1998, Prokaryotes: The unseen majority. Proc.Natl. Acad.Sci. U.S.A. 95: 6578–6583.

    Article  CAS  PubMed  Google Scholar 

  • Williams, S. T., and Vickers, J. C., 1986, The ecology of antibiotic production. Microbial Ecol. 12:43–52.

    Article  CAS  Google Scholar 

  • Wissing, F., 1974, Cyanide formation from oxidation of glycine by a Pseudomonas species. J. Bacteriol. 117:1289–1294.

    CAS  PubMed  Google Scholar 

  • Wright, S. A. I, Zumoff, C. H, Schneider, L., and Beer, S. V., 2001, Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67: 284–292.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Hiradate, S., Tsukamoto, T., hatakeda, K., and Shilata. A., 2001, Antimicrobial activity of culture filtrate of B. amyloquefaciens RC2 isolated from mulberry leaves. Phytopathology 91:181–187.

    Google Scholar 

  • Yoshida, S., Shirata, A., and Hiradate, S., 2002, Ecological characteristics and biological control of mulberry anthracnose. JARQ 36: 89–95.

    Google Scholar 

  • You, Z., Fukushima, J., Tanaka, K., Kawamoto, S., and Okuda, K., 1998, Induction into the stationary growth phase on the Pseudomonas aeruginosa by N-acylhomoserine lactone. FEMS Microbiol. Lett. 164: 99–106.

    CAS  PubMed  Google Scholar 

  • Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Beragnolli, B. L., 2002, Production of iturin A by B. amyloliquefaciens suppressing R. solani. Soil Biol. Biochem. 34: 955–963.

    Article  CAS  Google Scholar 

  • Zhang, Y., and Fernando, W. G. D., 2004a, Presence of biosynthetic genes for phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol and pyrrolnitrin in Pseudomonas chlororaphis strain PA-23. Can. J. Plant Pathol. (in press).

    Google Scholar 

  • Zhang, Y., and Fernando W. G. D., 2004b, Zwittermicin A detection in Bacillus spp. controlling Sclerotinia sclerotiorum on canola. Phytopathology 94:S116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Fernando, W.G.D., Nakkeeran, S., Zhang, Y. (2005). Biosynthesis of Antibiotics by PGPR and its Relation in Biocontrol of Plant Diseases. In: Siddiqui, Z.A. (eds) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4152-7_3

Download citation

Publish with us

Policies and ethics