Skip to main content
Log in

Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Sequences of four chloroplast DNA non-coding regions, about 3,000 bp in total, were analysed in 112 Aegilops tauschii accessions, 56 of ssp. tauschii and 56 of ssp. strangulata, representing all of the species range. One inversion, 8 insertions/deletions, 18 base pair substitutions and 5 microsatellite loci were found. The data revealed that Ae. tauschii originated in Caucasia. Neither of the two Ae. tauschii subspecies was an ancestor to one another. Aegilops tauschii divided into ssp. tauschii and ssp. strangulata at the very beginning of its existence as a species. Subspecies tauschii was the first to start geographic expansion and relatively rapidly occupied a vast area from Caucasia—eastward up to central Tien Shan and western Himalayas. In contrast to ssp. tauschii, geographic spread of ssp. strangulata was a complicated, multi-stage and slow process. At the beginning of ssp. strangulata evolutionary history its major phylogenetic lineage for a lengthy time span had existed as a small isolated population. Several forms of ssp. strangulata, better adapted to relatively moister and cooler habitats, had originated. Each of these forms has gradually forced out ssp. tauschii from some part of its area in the west, up to central Kopet-Dag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 141:743–753

    PubMed  CAS  Google Scholar 

  • Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Bender W, Pierre S, Hognes DS, Chambona P (1983) Chromosomal walking and jumping to isolate DNA from Ace and rosy loci of bithorax loci in Drosophila melanogaster. J Mol Biol 168:17–33

    Article  PubMed  CAS  Google Scholar 

  • Dudnikov AJ (1998) Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80:248–258

    Article  Google Scholar 

  • Dudnikov AJ (2000) Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour Crop Evol 47:185–190

    Article  Google Scholar 

  • Dudnikov AJ (2003a) Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129:89–97

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2003b) Germination capacity is in line with the allelic constitution of enzyme-encoding genes in Aegilops tauschii. Cereal Res Commun 31:403–406

    Google Scholar 

  • Dudnikov AJ (2007) An acid phosphatase gene set (Acph-2) of common wheat orthologous to Acph1 of Aegilops tauschii. Cereal Res Commun 35:11–13

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2009) Searching for an effective conservation strategy of Aegilops tauschii genetic variation. Cereal Res Commun 37:31–36

    Article  Google Scholar 

  • Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586

    Article  Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Repertorium speciorum novarum regni vegetabilis. Beihefte 55:1–228

    Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bonjean P, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoidier Publishing, Paris, pp 3–58

    Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Hedrick PW (2005) Genetics of populations. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–284

    Article  CAS  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase enzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Khakimova AG (2010) Genetic structure of Aegilops tauschii Coss. from VIR collection based on seed marker proteins. In: Dzyubenko NI (ed) 8-th International wheat conference. Abstracts of oral and poster presentations. 1–4 June 2010, N.I. Vavilov Research Institute of Plant Industry (VIR), St. Petersburg, pp 97–98

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Ozkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer, Berlin, pp 1–76

    Chapter  Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat. An introduction. Special report 353. College of Agriculture, University of Missouri, Columbia

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirby J, Vinh HT, Reader SM, Dudnikov AJ (2005) Genetic mapping of the Acph1 locus in Aegilops tauschii. Plant Breed 124:523–524

    Article  CAS  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Article  Google Scholar 

  • Marshall HD, Newton C, Ritland K (2001) Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. Mol Biol Evol 18(11):2136–2138

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Mori N, Kawahara T (2005) Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor Appl Genet 111:265–271

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008) Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS One 3(9):e3138. doi:10.1371/journal.pone.0003138

  • Matsuoka Y, Nishioka E, Kawahara T, Takumi S (2009) Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst Evol 279:233–244

    Article  Google Scholar 

  • Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S (2010) Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 19:999–1013

    Article  PubMed  Google Scholar 

  • Nakamura C, Hattori N, Kitagawa K, Nakagami Y, Takumi S (2001) Heteroplasmy in the mitohondrial NAD3-ORF156 region in wheat, Aegilops and their nucleus-cytoplasmic hybrids. International conference “genetic collections, isogenic and alloplasmic lines”, IC&G SB RAN, Novosibirsk, pp 90–93

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Roder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Saeidi H, Tabatabaei BES, Rahimmalek M, Talebi-Badaf M, Rahiminejad MR (2008) Genetic diversity and gene-pool subdivisions of diploid D-genome Aegilops tauschii Coss. (Poaceae) in Iran as revealed by AFLP. Genet Resour Crop Evol 55:1231–1238

    Article  CAS  Google Scholar 

  • Takumi S, Mizuno N, Okumura Y, Kawahara T, Matsuoka Y (2008) Two major lineages of Aegilops tauschii Coss. revealed by nuclear DNA variation analysis. In: Appels R et al. (eds) The 11th international wheat genetics symposium proceedings. Sydney University Press, Sydney. http://www.hdl.handle.net/2123/3432

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wagenningen Agricultural University Papers, Wageningen

    Google Scholar 

  • Wright S (1937) The distribution of gene frequencies in populations. Proc Natl Acad Sci USA 23:307–320

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92(11):1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Zhukovsky PM (1928) A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot Genet Plant Breed 18:417–609 (in Russian)

    Google Scholar 

Download references

Acknowledgments

I would like to express my sincere gratitude to Miss. Rinata R. Husainova and Dr. Oleg V. Vaulin for the help in the course of this study. I am also very grateful to Prof. Sasa Stefanovic for useful discussion. And I wish to thank Mrs. Holly Griesbach for refining the English of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ju. Dudnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudnikov, A.J. Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species. Genet Resour Crop Evol 59, 683–699 (2012). https://doi.org/10.1007/s10722-011-9711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-011-9711-8

Keywords

Navigation