Skip to main content

Abstract

In spite of more than 200 years of botanical exploration of the Orient, resulting in many herbaria and germplasm collections, sequence data, and transferred alleles, our knowledge on the genus Aegilops is far from complete. Several aspects concerning the genus Aegilops L. will be reviewed in this chapter. We consider 23 annual species and follow in their classification the monographs of Hammer (Kulturpflanze 28:33–180, 1980a; Feddes Rep 91:225–258, 1980b) and van Slageren (Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University Papers, Wageningen, Netherlands, 1994). We show that Aegilops species have been closely involved in wheat evolution, played a major role in wheat domestication, and will play a critical role in future wheat improvement. We show that the keys to obtain deeper insights to Aegilops genetic diversity, AegilopsTriticum molecular biological relationships, and to harvest and preserve suitable alleles for future wheat improvement are (1) a comprehensive germplasm collection covering the whole distribution area of each species; (2) the comparison of several accessions for each species considering all ploidy levels; (3) the use of new molecular fingerprinting techniques and the access to high-throughput sequencing technologies; (4) the improvement of analytical methods capable of treating various issues based on mathematical and statistical models, and (5) archeological excavation campaigns should also consider studies on Aegilops species. We urgently need detailed studies for each Aegilops species dealing with natural distribution range, ecology, soil, geomorphology, molecular resources, and genome sequences. There is an urgent need for an active in situ conservation to protect Aegilops species in their natural habitats.

“For the sake of future generations, we MUST collect and study wild and weedy relatives of our cultivated plants as well as the domesticated races. These sources of germplasm have been dangerously neglected in the past, but the future may not be so tolerant. In the plant breeding programs of tomorrow we cannot afford to ignore any source of useable genes.” Harlan (1970)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AE numbers refer to IPK Genebank Aegilops accession numbers. GIS distribution maps are based on van Slageren (1994) and our own observations. More information about the accessions can be obtained from http://gbis.ipk-gatersleben.de/gbis_i/.

References

  • Adonina IG, Salina EA, Pestsova EG, Röder MS (2005) Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome 48:959–970

    PubMed  CAS  Google Scholar 

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph I -induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    CAS  Google Scholar 

  • Ainsworth CC, Miller TE, Gale MD (1987) α-amylase and β-amylase homoeoloci in species related to wheat. Genet Res 49:93–103

    Google Scholar 

  • Akhunov ED, Akhunova AR, Dvorak J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploidy wheat. Theor Appl Genet 111:1617–1622

    PubMed  CAS  Google Scholar 

  • Alam KB, Gustafson JP (1988) Tan-spot resistance screening of Aegilops species. Plant Breed 100:112–118

    Google Scholar 

  • Allaby RG, Brown TA (2001) Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops. Genetics 157:1331–1341

    PubMed  CAS  Google Scholar 

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Commun 31:331–338

    CAS  Google Scholar 

  • Alonso LC, Kimber G (1981) The analysis of meiosis in hybrids. II. Triploid hybrids. Can J Genet Cytol 23:221–234

    Google Scholar 

  • Anikster Y, Noy-Meir I (1991) The wild-wheat field laboratory at Ammiad. Isr J Bot 40:351–362

    Google Scholar 

  • Anikster Y, Feldman M, Horowitz A (1997) The Ammiad experiment. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, UK, pp 239–253

    Google Scholar 

  • Ankory H, Zohary D (1962) Natural hybridization between Aegilops longissima and Ae. sharonensis: a morphological and cytological study. Cytologia 27:314–315

    Google Scholar 

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in a hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764

    CAS  Google Scholar 

  • Athwal RS, Kimber G (1972) The pairing of an alien chromosome with homoeologous chromosomes of wheat. Can J Genet Cytol 14:325–333

    Google Scholar 

  • Azzi G (1954) Ecologie agricole. Baillére, Paris, France

    Google Scholar 

  • Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190

    CAS  Google Scholar 

  • Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe B, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76

    CAS  Google Scholar 

  • Bai D, Scoles G, Knott D (1994) Transfer of leaf rust and stem rust resistance from Triticum triaristatum to durum and bread wheats and their molecular cytogenetic localization. Genome 37:410–418

    PubMed  CAS  Google Scholar 

  • Bai D, Scoles GJ, Knott DR (1995) Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats. Genome 38:8–16

    PubMed  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    PubMed  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1994) Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica 76:53–61

    Google Scholar 

  • Barloy D, Lemoin J, Dedryver F, Jahier J (2000) Identification of molecular markers linked to the Aegilops variabilis-derived root knot nematode resistance gene Rkn-mn1 in wheat. Plant Breed 118:169–172

    Google Scholar 

  • Baum BR, Edwards T, Johnson DA (2009) Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units. Mol Phylogen Evol 53:34–44.

    CAS  Google Scholar 

  • Bennett GAF (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Google Scholar 

  • Bhave M, Morris CF (2008a) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol 66:221–231

    PubMed  CAS  Google Scholar 

  • Bhave M, Morris CF (2008b) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

    PubMed  CAS  Google Scholar 

  • Blaszczyk L, Goyeau H, Huang XQ, Röder M, Stepień L, Chełkowski J (2004) Identifying leaf rust resistance genes and mapping gene Lr37 on the microsatellite map of wheat. Cell Mol Biol Lett 9(4B):869–878

    PubMed  CAS  Google Scholar 

  • Boguslavsky L (1979) Flowering, pollination and spontaneous hybridization in the genus Aegilops L. (in Russian). PhD Thesis, Vavilov All-Russian Institute of Plant Industry, St. Petersburg, Russia

    Google Scholar 

  • Bor NL (1968) Aegilops L. In: Townsend CC, Guest E, Al-Rawi A (eds) Flora of Iraq, vol 9. Iraq Ministry of Agriculture, Baghdad, pp 173–197

    Google Scholar 

  • Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062

    PubMed  CAS  Google Scholar 

  • Bowden WM (1959) The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. Can J Bot 37:657–684

    Google Scholar 

  • Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN, Singh S, Hassawi DS, Fritz AK, Namuth D, Lapitan NLV, Gill BS (1999) A high-density linkage map of Aegilops tauschii, the D-genome progenitor of wheat. Theor Appl Genet 99:16–26

    CAS  Google Scholar 

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Google Scholar 

  • Börner A, Freytag U, Sperling U (2006) Analysis of wheat disease resistance data originating from screenings of Gatersleben genebank accessions during 1933 and 1992. Genet Resour Crop Evol 53:453–465

    Google Scholar 

  • Brown JWS, Kemble RJ, Law CN, Flavell RB (1979) Control of Endosperm proteins in Triticum aestivum (var. Chinese Spring) by homoeologous group 1 chromosomes. Genetics 93:189–200

    PubMed  CAS  Google Scholar 

  • Buloichik AA, Borzyak VS, Voluevich EA (2008) Influence of alien chromosomes on the resistance of soft wheat to biotrophic fungal pathogens. Cytol Genet 42:9–15

    Google Scholar 

  • Cakmak I, Tolay I, Ozkan H, Ozdemir A, Braun HJ (1999) Variation in zinc efficiency among and within Aegilops species. J Plant Nutr Soil Sci 162:257–262

    CAS  Google Scholar 

  • Calder DM (1966) Inflorescence induction and initiation in the Gramineae. In: Milthorpe FL, Ivins JD (eds) The growth of cereals and grasses. Butterworths, London, UK, pp 59–73

    Google Scholar 

  • Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    CAS  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939

    PubMed  CAS  Google Scholar 

  • Ceoloni C, Del Signore G, Pasquini M, Testa M (1988) Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium. Cambridge University Press, Cambridge, UK, pp 221–226

    Google Scholar 

  • Ceoloni C, Donini P (1993) Combining mutations of two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome 36:377–386

    PubMed  CAS  Google Scholar 

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–334

    PubMed  CAS  Google Scholar 

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chaloub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105:9691–9696

    PubMed  CAS  Google Scholar 

  • Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J (2004) Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice. Mol Genet Genomics 271:377–386

    PubMed  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Sourdille P, Joudrier P, Gautier M-F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045

    PubMed  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homologous group 7 chromosomes. Theor Appl Genet 78:495–504

    CAS  Google Scholar 

  • Chapman V, Riley R (1970) Homoeologous meiotic chromosome pairing in Triticum aestivum in which chromosome 5B is replaced by an alien homoeologue. Nature 226:376–377

    PubMed  CAS  Google Scholar 

  • Chen KC, Dvorak J (1984) The inheritance of genetic variation in Triticum speltoides affecting heterogenetic chromosome pairing in hybrids with Triticum aestivum. Can J Genet Cytol 26:279–287

    Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    CAS  Google Scholar 

  • Chen SW, Chen PD, Wang XE (2008) Inducement of chromosome translocation with small alien segments by irradiation mature female gametes of the whole arm translocation line. Sci China Ser C Life Sci 51:346–352

    Google Scholar 

  • Chenicek KJ, Hart GE (1987) Identification and chromosomal locations of aconitase gene loci in Triticeae species. Theor Appl Genet 74:261–268

    Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007) Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Springer, Doerdrecht, Netherlands, pp 83–90

    Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008a) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 55:849–859

    Google Scholar 

  • Chhuneja P, Kaur A, Kaur S, Dhaliwal HS, Singh K (2008b) A novel leaf rust resistance gene transferred from Aegilops caudata L. to Triticum aestivum L. maps on chromosome 5D. In: Poster exhibited at 11th international wheat genetics symposium, Sydney, Australia

    Google Scholar 

  • Claesson L, Kotimaki M, von Bothmer R (1990) Crossability and chromosome pairing in some interspecific Triticum hybrids. Hereditas 112:49–55

    Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    PubMed  CAS  Google Scholar 

  • Conner RL, Thomas JB, Whelan EDP (1991) Comparison of mite resistance for control of wheat streak mosaic. Crop Sci 31:315–318

    Google Scholar 

  • Cox TS, Sears RG, Gill BS (1992) Registration of KS90WGRC10 leaf rust-resistant hard red winter wheat germplasm. Crop Sci 32:506

    Google Scholar 

  • Cox TS, Hatchett JH (1994) Hessian fly-resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci 34:958–960

    Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Google Scholar 

  • Damania AB, Altunji H, Dhaliwal HS (1992) Evaluation of Aegilops spp. for drought and frost tolerance. Genetics Research Unit Annual Report 1992, ICARDA, Aleppo, Syria, pp 45–46

    Google Scholar 

  • Damania AB (1994) In situ conservation of biodiversity of wild progenitors of cereal crops in the near east. Biodivers Lett 2:56–60

    Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler B, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    PubMed  CAS  Google Scholar 

  • Davis PH (1985) Aegilops L. In: Davis PH (ed) Flora of Turkey, vol 9. Edinburgh University Press, Edinburgh, pp 233–245

    Google Scholar 

  • De Candolle A (1883) (en fait, octobre 1882) Origine des Plantes Cultivées. Germer Baillière, Paris, France

    Google Scholar 

  • De Vries AP (1971) Flowering biology of wheat, particularly in view of hybrid seed production – a review. Euphytica 20:152–170

    Google Scholar 

  • Delibes A, Lopez-Brafia I, Mena M, Garcia-Olmedo F (1987) Genetic transfer of resistance to powdery mildew and of an associated biochemical marker from Aegilops ventricosa to hexaploid wheat. Theor Appl Genet 73:605–608

    Google Scholar 

  • Delibes A, Romero D, Aguaded S, Duce A, Mena M, Lopez-Brana I, Andres M-F, Martin-Sanchez JA, Garcia-Olmedo F (1993) Resistance to the cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping-stone” procedure. Theor Appl Genet 87:402–408

    Google Scholar 

  • Delibes A, Del Moral J, Martin-Sanchez JA, Mejias A, Gallego M, Casado D, Sin E, López-Brana I (1997) Hessian fly-resistance gene transferred from chromosome 4Mv of Aegilops ventricosa to Triticum aestivum. Theor Appl Genet 94:858–864

    CAS  Google Scholar 

  • Dhaliwal HS, Friebe B, Gill KS, Gill BS (1990) Cytogenetic identification of Aegilops squarrosa chromosome additions in durum wheat. Theor Appl Genet 79:769–774

    Google Scholar 

  • Dhaliwal HS, Harjit-Singh WM (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126:153–159

    CAS  Google Scholar 

  • Dinev NS, Netcheva V (1995) Plant mineral composition and tolerance to low pH in species of tribe Triticeae. Soil Sci Plant Anal 26:223–235

    CAS  Google Scholar 

  • Dondlinger PT (1916) The book of wheat, an economic history and practical manual of the wheat industry. Orange Judd Co, Kegan Paul, Trubner & Co, New York, USA

    Google Scholar 

  • Donini PR, Koebner RMD, Ceoloni C (1995) Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor Appl Genet 91:738–743

    CAS  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. Vol 1. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants. Leningrad, Russia

    Google Scholar 

  • Dosba F, Doussinault G, Rivoal R (1978) Extraction, identification and utilization of the addition lines T. aestivumAe. ventricosa. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 332–337

    Google Scholar 

  • Dosba F (1982) Les lignées d’addition blé – Aegilops ventricosa. III. Extraction et identification des lignées sur cytoplasme Aegilops ventricosa. Agronomie 2:469–478

    Google Scholar 

  • Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F (1983) Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303:698–700

    Google Scholar 

  • Dover GA (1973) The genetics and interactions of ‘A’ and ‘B’ chromosomes controlling meiotic chromosome pairing in the Triticeae. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. University of Missouri, Columbia, USA, p 653667

    Google Scholar 

  • Driscoll CJ (1974) Wheat–Triticum kotschyi (Aegilops variabilis) (2n = 28) addition lines. EWAC Newsl 4:60

    Google Scholar 

  • Driscoll CJ, Bielig LM, Darvey NL (1979) Analysis of frequencies of chromosome configurations in wheat and wheat hybrids. Genetics 91:755–767

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660

    CAS  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407

    CAS  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    PubMed  CAS  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    PubMed  CAS  Google Scholar 

  • Dvorak J (1976) The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can J Genet Cytol 18:371–377

    Google Scholar 

  • Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141

    Google Scholar 

  • Dvorak J, Lassner MW, Kota RS, Chen KC (1984) The distribution of the ribosomal RNA genes in the Triticum speltoides and Elytrigia elongata genomes. Can J Genet Cytol 26:628–632

    CAS  Google Scholar 

  • Dvorak J, McGuire PE, Cassidi B (1988) Apparent sources of the A genomes of wheat inferred from polymorphism in abundance and restriction fragment length of repeated sequences. Genome 30:680–689

    CAS  Google Scholar 

  • Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897

    Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    PubMed  CAS  Google Scholar 

  • Dvorak J, Zhang HB (1992) Application of molecular tools for study of the phylogeny of diploid and polyploidy taxa in Triticeae. Hereditas 116:37–42

    Google Scholar 

  • Dvorak J, Diterlizzi P, Zhang H-B, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL (1998a) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Proceedings of Harlan symposium. ICARDA, Aleppo, Syria, pp 235–251

    Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998b) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 67:657–670

    Google Scholar 

  • Dvorak J, Akhunov E (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 17:323–332

    Google Scholar 

  • Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27

    PubMed  CAS  Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 13:480–483

    Google Scholar 

  • Eastwood RF, Lagudah ES, Halloran GM, Brown JS, Kollmorgan JF, Appels R (1993) Resistance to cereal cyst nematode in Triticum tauschii. In: Imrie BC, Hacker JB (eds) Focussed plant improvement: towards responsible and sustainable agriculture, vol 2. Proceedings of 10th Australian plant breeding conference, Gold Coast, pp 7–18

    Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Repertorium Specierum novarum regni vegetabilis Beih 55:1–228

    Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50:1029–1037

    PubMed  CAS  Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51:616–627

    PubMed  CAS  Google Scholar 

  • El Bouhssini M, Nachit MM, Valkoun J, Abdalla O, Rihawi F (2008) Sources of resistance to Hessian fly (Diptera: Cecidomyiidae) in Syria identified among Aegilops species and synthetic derived bread wheat lines. Genet Resour Crop Evol 55:1215–1219

    Google Scholar 

  • Ellstrand NC, Prentıce HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Google Scholar 

  • Endo TR, Tsunewaki K (1975) Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66:13–18

    Google Scholar 

  • Endo TR, Katayama Y (1978) Finding of a selectively retained chromosome of Aegilops caudata L. in common wheat. Wheat Info Serv 48:32–35

    Google Scholar 

  • Endo TR (1979) Selective gametocidal action of a chromosome of Aegilops cylindrica in a cultivar of common wheat. Wheat Info Serv 50:24–28

    Google Scholar 

  • Endo TR (1985) Two types of gametocidal chromosomes of Ae. sharonensis and Ae. longissima. Jpn J Genet 60:125–135

    Google Scholar 

  • Endo TR (1988) Chromosome mutations induced by gametocidal chromosomes in common wheat. In: Millet TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, UK, pp 259–265

    Google Scholar 

  • Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65:135–152

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Fandrich L, Mallory-Smith CA, Zemetra RS, Hansen JL (2008) Vernalization responses of jointed goatgrass (Aegilops cylindrica), wheat, and wheat by jointed goatgrass hybrid plants. Weed Sci 56:534–542

    CAS  Google Scholar 

  • Faris J, Sirikhachornkit A, Haselkorn R, Gill B, Gornicki P (2001) Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat. Mol Biol Evol 18:1720–1733

    PubMed  CAS  Google Scholar 

  • Faris JD, Steven SX, Xiwen C, Timothy LF, Yue J (2008) Molecular and cytogenetic characterization of a durum Wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chrom Res 16:1097–1105

    PubMed  CAS  Google Scholar 

  • Farooq S, Niazi MLK, Iqbal N, Shah TM (1989) Salt tolerance potential of wild resources of the tribe Triticeae. II. Screening of species of genus Aegilops. Plant Soil 119:255–260

    CAS  Google Scholar 

  • Farooq S, Azam FE (2001) Co-existence of salt and drought tolerance in Triticeae. Hereditas 135:205–210

    PubMed  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The flowering locus T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    PubMed  CAS  Google Scholar 

  • Fedak G, Cao W, Han F, Savard M, Gilbert J, Xue A (2004) Germplasm enhancement for FHB resistance in spring wheat through alien introgression. In: Canty SM, Boring T, Versdahl TK, Wardwell J, Ward RW (eds) Proceedings of the 2nd international symposium on fusarium head blight. Michigan State University, Orlando, East Lansing, MI, USA, pp 56–57

    Google Scholar 

  • Feldman M (1975) Alien addition lines of common wheat containing Triticum aestivum chromosomes. Proceedings of 12th international botanical congress. Leningrad, USSR, p 506

    Google Scholar 

  • Feldman M (1978) New evidence on the origin of the B genome of wheat. In: Ramanujam S (ed) Proceedings of 5th international wheat genetics symposium, vol 1. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 120–132

    Google Scholar 

  • Feldman M (1983) Gene transfer from wild species into cultivated plants. Acta Biol Yugoslav Genet 15:145–161

    Google Scholar 

  • Feldman M (1988) Cytogenetic and molecular approaches to alien gene transfer in wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, UK, pp 23–32

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Google Scholar 

  • Fernandez-Calvin B, Orellana J (1991) Metaphase I bound arms frequency and genome analysis in wheat-Aegilops hybrids. 1. Ae. variabilis-wheat and Ae. kotschyi-wheat hybrids with low and high homoeologous pairing. Theor Appl Genet 83:264–272

    Google Scholar 

  • Flinn MF, Smith CM, Reese JC, Gill BS (2001) Categories of resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii germplasm. J Econ Entomol 94:558–563

    PubMed  CAS  Google Scholar 

  • Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389

    Google Scholar 

  • Friebe B, Schubert V, Blüthner WD, Hammer K (1992) C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivumAe. caudata and six derived chromosome addition lines. Theor Appl Genet 83:589–596

    Google Scholar 

  • Friebe B, Tuleen N, Jiang J, Gill BS (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36:731–742

    PubMed  CAS  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1995a) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254

    Google Scholar 

  • Friebe B, Jiang J, Tuleen N, Gill BS (1995b) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet 90:150–156

    Google Scholar 

  • Friebe B, Tuleen NA, Badaeva ED, Gill BS (1996a) Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome 39:272–276

    PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996b) Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Friebe B, Badaeva ED, Hammer K, Gill B (1996c) Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst Evol 202:199–210

    Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivumAegilops geniculata chromosome addition lines. Genome 42:374–380

    Google Scholar 

  • Friebe B, Qi LL, Nasuda A, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivumAegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Google Scholar 

  • Friebe B, Zhang P, Nasuda S, Gill BS (2003) Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma 111:509–517

    PubMed  Google Scholar 

  • Fu D, Szücs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN1 are associated with spring growth habit in barley and wheat. Mol Gen Genom 273:54–65

    CAS  Google Scholar 

  • Fu YB, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161–198

    Google Scholar 

  • Galili S, Avivi Y, Millet E, Feldman M (2000) RFLP-based analysis of three RbcS subfamilies in diploid and polyploidy species of wheat. Mol Gen Genet 263:674–680

    PubMed  CAS  Google Scholar 

  • Gandhi HT, Vales MI, Watson CJW, Mallory-Smith CA, Mori N, Reman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111:561–572

    PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Delibes A, Sanchez-Monge R (1984) Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. In: Breeding for disease resistance and oat breeding. Proceedings of EUCARPIA Cereal Section Meeting, Weihenstephan, Germany

    Google Scholar 

  • Gautier M, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

    PubMed  CAS  Google Scholar 

  • Gautier MF, Cosson P, Guirao A, Alary R, Joudrier P (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci 153:81–91

    CAS  Google Scholar 

  • Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F (2001) Polymorphism of high Mr glutenin subunits in Triticum tauschii: characterization by chromatography and electrophoretic methods. J Cereal Sci 33:39–52

    CAS  Google Scholar 

  • Gianibelli MC, Lagudah ES, Wrigley CW, MacRitchie F (2002a) Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor Appl Genet 104:497–504

    PubMed  CAS  Google Scholar 

  • Gianibelli MC, Wrigley CW, MacRitchie F (2002b) Polymorphism of low Mr glutenin subunits in Triticum tauschii. J Cereal Sci 35:277–286

    CAS  Google Scholar 

  • Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol Biol Evol 11:769–777

    PubMed  CAS  Google Scholar 

  • Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572

    PubMed  CAS  Google Scholar 

  • Gill BS, Kimber G (1974) Giemsa C-banding and the evolution of wheat. Proc Natl Acad Sci USA 71:40864090

    Google Scholar 

  • Gill BS, Chen PD (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats. Proc Natl Acad Sci USA 84:6800–6804

    PubMed  CAS  Google Scholar 

  • Gill BS, Hatchett JH, Raupp WJ (1987) Chromosomal mapping of Hessian fly-resistance gene H13 in the D genome of wheat. J Hered 78(2):97–100

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991a) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991b) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D-genome of bread wheat (AABBDD). Genome 14:362–374

    Google Scholar 

  • Gill KS, Hassawi D, Raupp WJ, Fritz AK, Gill BS et al. (1992) An updated genetic linkage map of Triticum tauschii, the D-genome progenitor of wheat. In: Gill BS, Raupp WJ, Corke H (eds) Progress in genome mapping of wheat and related species. Proceedings of the 2nd international Triticeae mapping initiative, 1991, Manhattan, KS, USA. Report No. 10, University of California Genetic Resources Conservation Program, Davis, CA, 82p

    Google Scholar 

  • Giorgi B (1983) Origin, behaviour and utilization of a ph1 mutant of durum wheat, Triticum turgidum L. var. durum. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium. Kyoto University, Kyoto, Japan, pp 1033–1040

    Google Scholar 

  • Giroux M, Morris CG (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95:6262–6266

    PubMed  CAS  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hempill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374

    CAS  Google Scholar 

  • Godron DA (1854) De la fécondation naturelle et artificielle des Aegilops par le Triticum. Ann Sci Nat Sér 3:215–222

    Google Scholar 

  • Gold J, Harder D, Townley-Smith F, Aung T, Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2(1):35–40

    Google Scholar 

  • Goldberg SM, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H, Kravitz SA, Lauro FM, Li K, Rogers YH, Strausberg R, Sutton G, Tallon L, Thomas T, Venter E, Frazier M, Venter JC (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103:11240–11245

    PubMed  CAS  Google Scholar 

  • Gollan P, Smith K, Bhave M (2007) Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J Cereal Sci 45:184–198

    CAS  Google Scholar 

  • Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkison LR, Goncharov NP (2007) Molecular phylogeny of the genus Triticum L. Plant Syst Evol 264:195–216

    CAS  Google Scholar 

  • Goryunova SV, Kochieva EZ, Chikida NN, Pukhalskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Russ J Genet 40:515–523

    CAS  Google Scholar 

  • Goryunova SV, Chikida NN, Gori M, Kochieva EZ (2005) Analysis of nucleotide sequence polymorphism of internal transcribed spacers of ribosomal genes in diploid Aegilops (L.) species. Mol Biol 39:173–176

    CAS  Google Scholar 

  • Govindaraju DR (1988) A note on the relationship between outcrossing rate and gene flow in plants. Heredity 61:401–404

    Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol 131:1855–1867

    PubMed  CAS  Google Scholar 

  • Groenewald JZ, Marais AS, Marais GF (2003) Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat. Plant Breed 122:83–85

    CAS  Google Scholar 

  • Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459–470

    PubMed  CAS  Google Scholar 

  • Gu YQ, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B (2006) Types and rates of sequence evolution at the high-molecular weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174:1493–1504

    PubMed  CAS  Google Scholar 

  • Guadagnolo R, Savova-Bianchi D, Felber F (2001a) Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host), as revealed by RAPD and microsatellite markers. Theor Appl Genet 103:1–8

    Google Scholar 

  • Guadagnolo R, Savova-Bianchi D, Felber F (2001b) Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44:610–621

    Google Scholar 

  • Gupta RB, Shepherd KW (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. 2. Genetic control of the subunits in species related to wheat. Theor Appl Genet 80:183–187

    CAS  Google Scholar 

  • Haider N, Nabulsi I (2008) Identification of Aegilops L. species and Triticum aestivum L. based on chloroplast DNA. Genet Resour Crop Evol 55:537–549

    CAS  Google Scholar 

  • Hammer K (1978) Blütenökologische Merkmale und Reproduktionssystem von Aegilops tauschii Coss. (syn. Ae. squarrosa L.). Kulturpflanze 26:271–282

    Google Scholar 

  • Hammer K (1980a) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Google Scholar 

  • Hammer K (1980b) Zur Taxonomie und Nomenklatur der Gattung Aegilops L. Feddes Rep 91:225–258

    Google Scholar 

  • Hammer K (1982) A key for determination of Aegilops species. MPGR News, Bari 1(2):9–13

    Google Scholar 

  • Hammer K (1985) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. – Resistenzuntersuchungen. Kulturpflanze 33:123–131

    Google Scholar 

  • Hammer K (1987) Resistenzmerkmale und Reproduktionssystem als Indikatoren für evolutionäre Tendenzen in der Gattung Aegilops L. Biol Zbl 106:273–282

    Google Scholar 

  • Hammer K, Laghetti G (2005) Genetic erosion – examples from Italy. Genet Resour Crop Evol 52:629–634

    Google Scholar 

  • Hammer K, Pistrick K, Filatenko AA (2011) Taxonomic remarks on Triticum L. and x Triticosecale Wittm.

    Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu Rev Ecol Syst 10:173–200

    Google Scholar 

  • Hanelt P (2001) Triticum L. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 5. Springer, Heidelberg, pp 2565–2591

    Google Scholar 

  • Harlan JR (1992) The gene pool system. In: Crops and man, 2nd edn. American Society for Agronomy and Crop Science Society of America, Madison, Wisconsin, USA, pp 106–107

    Google Scholar 

  • Hart GE, Tuleen NA (1983) Introduction and characterization of alien genetic material. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier, Amsterdam, Netherlands, pp 103–120

    Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Ponce C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    PubMed  CAS  Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2000) The ex situ conservation of plant genetic resources. Kluwer, Dordrecht, Netherlands

    Google Scholar 

  • Hedge SG, Valkoun J, Waines JG (2002) Genetic diversity in wild and weedy Aegilops, Amblyopyrum and Secale species – preliminary survey. Crop Sci 42:608–614

    Google Scholar 

  • Hedge SG, Waines JG (2004) Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Sci 44:1145–1155

    Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    CAS  Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    CAS  Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    CAS  Google Scholar 

  • Hiebert C, Thomas J, Somers D, McCallum B, Fox S (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    PubMed  CAS  Google Scholar 

  • Hodgkin T, Adham YJ, Powel KS (1992) A preliminary survey of wild Triticum and Aegilops species in the world’s genebanks. Hereditas 116:155–162

    Google Scholar 

  • Hollenhorst MM, Joppa LR (1983) Chromosomal location of genes for resistance to greenbug in ‘Largo' and ‘Amigo' wheats. Crop Sci 23:91–93

    Google Scholar 

  • Holubec V, Havlíčková A (1994) Interspecific differences in cereal aphid infestation of 20 Aegilops species. Genet a Šlecht 30:81–87

    Google Scholar 

  • Horovitz A, Feldman M (eds) (1991) International workshop on the dynamic in situ conservation of wild relatives of major cultivated plants. Isr J Bot 40:509–519

    Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370

    Google Scholar 

  • Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138

    PubMed  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Hucl P (1996) Out-crossing rates for 10 Canadian spring wheat cultivars. Can J Plant Sci 76:423–427

    Google Scholar 

  • Hueros G, Gonzalez JM, Sanz JC, Ferrer E (1991) Gliadin gene location and C-banding identification of Aegilops longissima chromosomes added to wheat. Genome 34:236–240

    Google Scholar 

  • Huguet-Robert V, Dedryver F, Roder MS, Korzun V, Abelard P, Tanguy AM, Jaudeau B, Jahier J (2001) Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot. Genome 44:345–349

    PubMed  CAS  Google Scholar 

  • Hussien T, Bowden RL, Gill BS, Cox TS (1997) Chromosomal location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci 37:1764–1766

    Google Scholar 

  • Iqbal N, Reader SM, Caligari PDS, Miller TE (2000) Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor Appl Genet 102:1173–1179

    Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase isozymes: Intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    CAS  Google Scholar 

  • Jaaska V (1995) Isoenzymes in the evaluation of germplasm diversity in wild diploid relatives of cultivated wheat. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, UK, pp 247–257

    Google Scholar 

  • Jahier J, Doussinault G, Dosba F, Bourgeois F (1978) Monosomic analysis of resistance to eyespot in the variety “Roazon”. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 437–440

    Google Scholar 

  • Jahier J, Tanguy AM, Abelard P, Rivoal R (1996) Utilization of deletions to localize a gene for resistance to the cereal cyst nematode, Heterodera avenue, on an Aegilops ventricosa chromosome. Plant Breed 115:282–284

    Google Scholar 

  • Jahier J, Rivoal R, Yu MQ, Abélard P, Tanguy AM, Barloy D (1998) Transfer of genes for resistance to cereal cyst nematode from Aegilops variabilis Eig to wheat. J Genet Breed 52:253–257

    Google Scholar 

  • Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar 'VPM1' carries the cereal cyst nematode resistance gene Cre5. Plant Breed 120:125–128

    CAS  Google Scholar 

  • Jarvis CE (1992) Seventy-two proposals for the conservation of types of selected Linnaean generic names, the report of subcommittee 3C on the lectotypification of Linnaean generic names. Taxon 41:555–556

    Google Scholar 

  • Jia JZ (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their in the tagging of Pm12, powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    CAS  Google Scholar 

  • Jiang J, Gill BS (1993) Sequential chromosome banding and in situ hybridization. Genome 36:792–795

    PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725

    PubMed  CAS  Google Scholar 

  • Jiang C, Pei Y, Zhang Y, Li X, Yao D, Yan Y, Ma W, Hasam SLK, Zeller FJ (2008) Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 145:92–98

    PubMed  Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39

    Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094

    Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    PubMed  CAS  Google Scholar 

  • Joppa LR, MacNeal FH, Berg MA (1968) Pollen production and pollen shedding of hard red spring (Triticum aestivum L. em. Thell.) and durum (T. durum Desf.) wheats. Crop Sci 8:487–490

    Google Scholar 

  • Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Google Scholar 

  • Kadosumi S, Kawahara T, Sasanuma T (2005) Multiple origins of U genome in two UM genome tetraploid Aegilops species, Ae. columnaris and Ae. triaristata, revealed based on the polymorphism of a genome-specific PCR fragment. Gene Genet Syst 80:105–111

    CAS  Google Scholar 

  • Kan Y, Wan Y, Beaudoin F, Leader DJ, Edwards K, Poole R, Wang D, Mitchell RAC, Shewry PR (2006) Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat. J Cereal Sci 44:75–85

    CAS  Google Scholar 

  • Kane NA, Danyluk J, Tardif G, Ouellet F, Laliberte J, Limin AE, Fowler DB, Sarhan F (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138:2354–2363

    PubMed  CAS  Google Scholar 

  • Kaplan D (2008) A designated nature reserve for in situ conservation of wild emmer wheat (Triticum dicoccoides (Körn.) Aaronsohn) in northern Israel. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CAB International, Wallingford, UK, pp 389–393

    Google Scholar 

  • Karagöz A (1998) In situ conservation of plant genetic resources in the Ceylanpinar State Farm. In: Zencirci N, Kaya Z, Anikster Y, Adams WT (eds) Proceedings of the international symposium on in situ conservation of plant diversity. Central Research Institute for Field Crops, Ankara, Turkey, pp 87–91

    Google Scholar 

  • Karsai I, Szücs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedö Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    PubMed  CAS  Google Scholar 

  • Kawahara T (2002) Morphological and isozyme variation in genebank accessions of Aegilops umbellulata Zhuk., a wild relative of wheat. Genet Resour Crop Evol 49:89–94

    Google Scholar 

  • Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae. Syst Bot 21:321–347

    Google Scholar 

  • Kerber ER (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143:253–255

    PubMed  CAS  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647

    Google Scholar 

  • Kerber ER, Dyck PL (1979) Resistance to stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 358–364

    Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides x Triticum monococcum. Genome 33:530–537

    CAS  Google Scholar 

  • Khan MN, Heyne EG, Arp AL (1973) Pollen distribution and the seedset on Triticum aestivum L. Crop Sci 13:223–226

    Google Scholar 

  • Khlestkina EK, Salina EA (2001) Genome-specific markers of tetraploid wheats and their putative diploid progenitor species. Plant Breed 120:227–232

    CAS  Google Scholar 

  • Kihara H (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem Coll Sci Univ Kyoto Ser B 1:1–200

    Google Scholar 

  • Kihara H (1937) Genomanalyse bei Triticum and Aegilops. VII. Kurze Übersicht über die Ergebnisse der Jahre 1934–1936. Mem Coll Agric Kyoto Imp Univ 41:1–61

    Google Scholar 

  • Kihara H (1944) Die Entdeckung der DD-Analysatoren beim Weizen. Agric Hort 19:889–890

    Google Scholar 

  • Kihara H (1951) Substitution of nucleus and its effects on genome manifestation. Cytologia 16:177–193

    Google Scholar 

  • Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia19:336–357

    Google Scholar 

  • Kihara H, Tsunewaki K (1962) Use of an alien cytoplasm as a new method of producing haploids. Jpn J Genet 37:310–313

    Google Scholar 

  • Kihara H, Yamashita H, Tanaka M (1965) Morphological, physiological, genetical, and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan, Iran. Results of the Kyoto University scientific expedition to the Karakoram and Hindukush in 1955. In: Yamashita K (ed) Cultivated plants and their relatives. Kyoto, Japan, pp 4–41

    Google Scholar 

  • Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007a) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227

    PubMed  CAS  Google Scholar 

  • Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007b) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668

    PubMed  CAS  Google Scholar 

  • Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the Fertile Crescent. In: Feuillet C, Muehlbauer G (eds) Genetics and genomics of the Triticeae. Plant genetics and genomics: crops and models 7. Springer, New York, pp 81–119

    Google Scholar 

  • Kimber G (1967) The addition of the chromosomes of Aegilops umbellulata to Triticum aestivum var. Chinese Spring. Genet Res (Camb) 9:111–114

    Google Scholar 

  • Kimber G, Athwal RS (1972) A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA 69:912–915

    PubMed  CAS  Google Scholar 

  • Kimber G, Hulse MM (1978) The analysis of chromosome pairing in hybrids and evolution of wheat. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 63–72

    Google Scholar 

  • Kimber G, Abu Bakar M (1979) Wheat hybrid information systems. Cereal Res Commun 7:257–260

    Google Scholar 

  • Kimber G, Alonso LC, Salle PJ (1981) The analysis of meiosis in hybrids. I. Aneuploid hybrids. Can J Genet Cytol 23:209–219

    Google Scholar 

  • Kimber G, Alonso LC (1981) The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can J Genet Cytol 23:235–254

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat: an introduction, Spl Rep 353. College of Agriculture, University of Missouri, Columbia, USA

    Google Scholar 

  • Kimber G, Sears, ER (1983) Assignment of genome symbols in the Triticeae. In: Proceedings of the sixth international wheat genetics symposium, Kyoto, Japan, pp. 1195–1196.

    Google Scholar 

  • Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. American Society of Agronomy, Madison, WI, USA, pp 154–164

    Google Scholar 

  • Kimber G, Tsunewaki K (1988) Genome symbols and plasma types in the wheat group. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat symposium, 1987, Cambridge, pp 1209–1211

    Google Scholar 

  • Kislev ME (1980) Triticum parvicoccum sp. nov., the oldest naked wheat. Isr J Bot 28:95–107

    Google Scholar 

  • Knobloch IW (1968) A checklist of crosses in the Gramineae. Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI, USA

    Google Scholar 

  • Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer G (eds) Genetics and genomics of the Triticeae. Plant genetics and genomics: crops and models 7. Springer, New York, pp 31–79

    Google Scholar 

  • Koba T, Shimada T (1993) Crossability of common wheat with Aegilops squarrosa. Wheat Inf Serv 77:7–12

    Google Scholar 

  • Koebner RMD (1987) Genetic control of a novel series of trypsin inhibitors in wheat and its relatives. Biochem Genet 25:591–602

    PubMed  CAS  Google Scholar 

  • Koebner RMD Miller TE, Snape JW, Law CN (1988) Wheat endopeptidase: genetic control, polymorphism, intrachromosomal gene location and alien variation. Genome 30:186–192

    Google Scholar 

  • Koebner RMD (1990) Subtilisin inhibitor – a polymorphic protein produced by a gene on the short arms of wheat homoeologous group 1 chromosomes. J Genet Breed 44:49–52

    Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429

    PubMed  CAS  Google Scholar 

  • Kota RS, Dvorak J (1988) Genomic instability in wheat induced by chromosome 6Bs of Triticum speltoides. Genetics 120:1085–1094

    PubMed  CAS  Google Scholar 

  • Koti K, Karsai I, Szücs P, Horvath CS, Meszaros K, Kiss GB, Bedö Z, Hayes PM (2006) Validation of the two-gene epistatic model for vernalization response in a winter x spring barley cross. Euphytica 152:17–24

    CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    PubMed  CAS  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal SH, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    PubMed  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal SH, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    CAS  Google Scholar 

  • Kynast RG, Friebe B, Gill BS (2000) Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata. Chrom Res 8:133–139

    PubMed  CAS  Google Scholar 

  • Lagudah ES, Halloran GM (1988) Phylogenetic relationships of Triticum tauschii, the D genome donor of hexaploid wheat 1. Variation in HMW subunits of glutenin and gliadins. Theor Appl Genet 75:592–598

    CAS  Google Scholar 

  • Lange JMC (1860) Pugillus plantarum imprimis hispanicarum, vol 1. Extr Vid Medd Naturh For København, Bianco Luno, Hauniae, Copenhagen

    Google Scholar 

  • Laurie D, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative traits loci controlling flowering time in a winter x spring barley (Hordeum vulgare) cross. Genome 38:575–585

    PubMed  CAS  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    PubMed  CAS  Google Scholar 

  • Levy AA, Galili G, Feldman M (1985) The effect of additions of Aegilops longissima chromosomes on grain protein in common wheat. Theor Appl Genet 69:429–435

    CAS  Google Scholar 

  • Li W, Huang L, Gill BS (2008a) Recurrent deletions of puroindoline genes at the grain Hardness locus in four independent lineages of polyploidy wheat. Plant Physiol 146:200–212

    PubMed  CAS  Google Scholar 

  • Li X, Ma W, Gao L, Zhang Y, Wang A, Ji K, Wang K, Appels R, Yan Y (2008b) A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 180:93–101

    PubMed  CAS  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    PubMed  CAS  Google Scholar 

  • Lillemo M, Simeone MC, Morris CF (2002) Analysis of puroindoline a and b sequences from T. aestivum cv. ‘Penawawa’ and related diploid taxa. Euphytica 126:321–331

    CAS  Google Scholar 

  • Limin AE, Fowler DB (1981) Cold resistance of some wild relatives of hexaploid wheat. Can J Bot 59:572–573

    Google Scholar 

  • Liu CJ, Gale MD (1990) Est-7, a set of genes controlling green tissue esterases in wheat and related species. Theor Appl Genet 79:781–784

    CAS  Google Scholar 

  • Liu XM, Gill BS, Chen MS (2005) Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet 111:243–249

    PubMed  CAS  Google Scholar 

  • Long H, Wei YM, Yan ZH, Baum B, Nevo E, Zheng YL (2005) Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor Appl Genet 111:1251–1259

    PubMed  CAS  Google Scholar 

  • Lukaszewski A (1995) Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of Ph1 gene in wheat and triticale. Theor Appl Genet 90:714–719

    Google Scholar 

  • Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    PubMed  Google Scholar 

  • Luo MC, Xu K, Ma Y, Deal KR, Nicolet CM, Dvorak J (2009) A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms. BMC Genomics. doi:10.1186/1471-2164-10-28

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1994) Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheats. Genet Resour Crop Evol 41:151–158

    Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat) 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Google Scholar 

  • Ma ZQ, Gill BS, Sorrells ME, Tanksley SD (1993) RFLP markers linked to Hessian fly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss.) Schmal. Theor Appl Genet 85:750–754

    CAS  Google Scholar 

  • Maan SS (1975) Exclusive preferential transmission of an alien chromosome in common wheat. Crop Sci 15:287–292

    Google Scholar 

  • Mac Key J (2005) Wheat: its concept, evolution and taxonomy. In: Royo C et al. (eds) Durum wheat breeding. Current approaches and future strategies, vol 1, pp 3–61

    Google Scholar 

  • Makino T (1976) Genetic studies on alien chromosome addition to a durum wheat. I. Some characteristics of seven monosomic addition lines of Aegilops umbellulata chromosomes. Can J Genet Cytol 18:455–462

    Google Scholar 

  • Makino T (1981) Cytogenetic studies on the alien chromosome addition to durum wheat. Bull Tohoku Natl Agric Exp Stn 65:1–58

    Google Scholar 

  • Makkouk KM, Comeau A, Ghulam W (1994) Resistance to barley yellow dwarf luteovirus in Aegilops species. Can J Plant Sci 74:631–634

    Google Scholar 

  • Malik R, Brown-Guedira GL, Smitha CM, Harvey TL, Gill BS (2003) Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci 43:644–650

    CAS  Google Scholar 

  • Marais GF, McCallum BD, Snyman JE, Pretorius ZA, Wellings CR, Marais AS (2005) Lr54 and Yr37 – rust resistance genes derived from Triticum kotschyi. Plant Breed 124:538–541

    CAS  Google Scholar 

  • Marais GF, McCallum B, Marais SA (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Google Scholar 

  • Marais GF, McCallum B, Marais AS (2008) Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed 127:340–345

    Google Scholar 

  • Martin TJ, Harvey TL, Hatchett JH (1982) Registration of greenbug and Hessian fly resistant wheat germplasm. Crop Sci 22:1089

    Google Scholar 

  • Martini G, O'dell M, Flavell RB (1982) Partial inactivation of wheat nucleolus organisers by the nucleolus organiser chromosomes from Aegilops umbellulata. Chromosoma 84:687–700

    Google Scholar 

  • Martin-Sanchez JA, Gomez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, Gonzalez-Belinchon C, Lopez-Brana I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255

    PubMed  CAS  Google Scholar 

  • Masci S, D’Ovidio R, Lafiandra D, Tanzarella A, Porceddu E (1992) Electrophoretic and molecular analysis of alpha-gliadins in Aegilops species (Poaceae) belonging to the D genome cluster and their putative progenitors. Plant Syst Evol 179:115–128

    CAS  Google Scholar 

  • Mason-Gamer R (2005) The beta-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae). Am J Bot 92:1045–1058

    CAS  Google Scholar 

  • Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal system. Chrom Res 10:349–357

    PubMed  CAS  Google Scholar 

  • Massa AN, Morris CF, Gill BS (2004) Sequence diversity of puroindoline-a, puroindoline-b and the grain softness protein genes in Aegilops tauschii Coss. Crop Sci 44:1808–1816

    CAS  Google Scholar 

  • Massa AN, Morris CF (2006) Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J Mol Evol 63:526–536

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717

    PubMed  Google Scholar 

  • Matsuoka Y, Mori N, Kawahara T (2005) Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor Appl Genet 111:265–271

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Takumi S (2007) Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor Appl Genet 115:509–518

    PubMed  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008) Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PlOS One 3(9):e3138. doi:10.1371/journal.pone.0003138

  • Maxted N, White K, Valkoun J, Konopka J, Hargreaves S (2008) Towards a conservation strategy for Aegilops species. Plant Genet Resour 6:126–141

    Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13:26–27

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(81–89):107–116

    Google Scholar 

  • McIntosh RA (1981) A gene for stem rust resistance in non-homoeologous chromosomes of hexaploid wheat progenitors. In: Carr DJ (ed) Proceedings of the 13th international botanical congress, Sydney, Australia, p 274

    Google Scholar 

  • McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzucht 89:295–306

    Google Scholar 

  • McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium. Bath Press, Bath, p 1273

    Google Scholar 

  • McIntosh RA (1991) Alien sources of diverse resistance in bread wheat. In: Sasakuma T, Kinoshita T (eds) Proceedings of the Kihara memorial international symposium on cytoplasmic engineering in wheat. Nuclear and Organellar Genomes of Wheat Species, Yokohama, Japan, pp 320–332

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts – an atlas of resistance genes. CSIRO, Kluwer Academic, Australia

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Sommers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat: 2008. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of the 11th international wheat genetics symposium, Sydney, Australia, Sydney University Press, Australia

    Google Scholar 

  • McKendry AL, Henke GE (1994) Evaluation of wheat wild relatives for resistance to Septoria tritici Blotch. Crop Sci 34:1080–1084

    Google Scholar 

  • Mello-Sampayo T (1971) Promotion of homoeologous pairing in hybrids of Triticum aestivum x Aegilops longissima. Genet Iber 23:1–9

    Google Scholar 

  • Mello-Sampayo T, Canas AP (1973) Suppression of meiotic chromosome pairing in common wheat. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium, Columbia, Missouri, USA, pp 703–713

    Google Scholar 

  • Mettin D, Blüthner WD, Schäfer HJ, Buchholtz U, Rudolph A (1977) Untersuchungen an Samenproteinen in der Gattung Aegilops. Tagungsber Akad Landwirtschaftswiss DDR 158:95–106

    Google Scholar 

  • Mihova S (1988) The resistance of Aegilops species to Puccinia striiformis West f. sp. tritici in relation with their ploidy and genome composition. Genet Selekt 21:20–25

    Google Scholar 

  • Miller TE (1983) Preferential transmission of alien chromosomes in wheat. In: Brandham PE, Bennett MD (eds) Proceedings of 2nd Kew chromosomes conference. George Allen & Unwin, London, UK, pp 173–182

    Google Scholar 

  • Miller TE, Reader SM (1987) A guide to the homoeology of chromosomes within the Triticeae. Theor Appl Genet 74:214–217

    Google Scholar 

  • Miller TE, Reader SM, Ainsworth CC, Summers RW (1987) The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici, from Aegilops speltoides into wheat. In: Jorna ML, Shootmaker LAJ (eds) Cereal breeding related to integrated cereal production. Proceedings of EUCARPIA conference, Wageningen, Netherlands, pp 179–183

    Google Scholar 

  • Miller TE, Reader SM, Mahmood A, Purdie KA, King IP (1995) Chromosome 3N of Aegilops uniaristata – a source of tolerance to high levels of aluminium for wheat. In: Li ZS, Xin Z (eds) Proceedings of the 8th international wheat genetics symposium. China Agricultural Scientech, Beijing, PRC, pp 1037–1042

    Google Scholar 

  • Miller TE, Iqbal N, Reader SM, Mahmood A, Cant KA, King IP (1997) A cytogenetic approach to the improvement of aluminium tolerance in wheat. New Phytol 137:93–98

    Google Scholar 

  • Millet E, Avivi Y, Zaccai M, Feldman M (1988) The effect of substitution of chromosome 5S1 of Aegilops longissima for its wheat homoeologues on spike morphology and on several quantitative traits. Genome 30:473–478

    Google Scholar 

  • Millet E (2006) Rescue collection of Aegilops sharonensis in Israel. Report submitted to IPGRI. http://www.ecpgr.cgiar.org/Networks/Cereals/Aegilops_collection_report.pdf

  • Millet E, Manisterski J, Ben-Yehuda P (2007) Exploitation of wild cereals for wheat improvement in the Institute for Cereal Crops Improvement. In: Maxted N (ed) Crop wild relative conservation and use. CAB International, Wallingford, UK, pp 554–563

    Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113(8):1497

    PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    PubMed  CAS  Google Scholar 

  • Miyashita NT, Mori N, Tsunewaki K (1994) Molecular variation in chloroplast DNA regions in ancestral species of wheat. Genetics 137:883–889

    PubMed  CAS  Google Scholar 

  • Monneveux P, Zaharieva M, Rekika D (2000) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region. Options Méditerranéennes, Serie A: Seminaires Méditerranéens (CIHEAM) 40:71–81

    Google Scholar 

  • Monte JV, De Nova PJG, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135:233–238

    PubMed  CAS  Google Scholar 

  • Montes MJ, Andrés MF, Sin E, López-Braña I, Martín-Sánchez JA, Romero MD, Delibes A (2008) Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars. Genome 51:315–319

    PubMed  CAS  Google Scholar 

  • Mori N, Liu YG, Tsunewaki K (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theor Appl Genet 90:129–134

    CAS  Google Scholar 

  • Mori N, Ishii T, Ishido T, Hirosawa S, Watatani H, Kawahara T, Nesbitt M, Belay G, Takumi S, Ogihara Y, Nakamura C (2003) Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. In: Proceedigs of the 10th international wheat genetics symposium, Paestum, Italy, pp 25–28

    Google Scholar 

  • Morris CF, Simeone MC, Gill BS, Mason-Gamer RJ, Lillemo M (2001) Comparison of puroindoline sequences from various diploid members of the Triticeae and modern cultivated hexaploid wheats. Cereals 2000. In: Wootton M, Batey IL, Wrigley CW (eds) Proceedings of the 11th ICC cereal and bread congress and the 50th Australian cereal chemistry conference. Royal Australian Chemical Institute, North Melbourne, Victoria, Australia, pp 678–681

    Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    PubMed  CAS  Google Scholar 

  • Moullet O, Zhang HB, Lagudah ES (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:303–313

    Google Scholar 

  • Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13:111–124

    Google Scholar 

  • Muramatsu M (1973) Genetic homology and cytological differentiation of the homoeologous-group-5 chromosomes of wheat and related species. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. Agriculture Experiment Station, College of Agriculture, University of Missouri, Columbia, USA, pp 719–724

    Google Scholar 

  • Naik S, Gill KS, Prakasa Rao VS, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjikar PK (1998) Identification of an STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    CAS  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor Appl Genet 112:787–796

    PubMed  CAS  Google Scholar 

  • Nesbitt M, Samuel D (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetics Resource Institute, Rome, Italy and IPK Gatersleben, Germany, pp 41–100

    Google Scholar 

  • Netzle S, Zeller FJ (1984) Cytogenetic relationship of Aegilops longissima chromosomes with common wheat chromosomes. Plant Syst Evol 145:1–13

    Google Scholar 

  • Nielsen J (1981) Is there a quick screening method for identifying wheat varieties resistant to loose smut? Cereal Res Commun 9:249–252

    Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    PubMed  CAS  Google Scholar 

  • Nishikawa K (1962) Hybrid lethality in crosses between emmer wheats and Aegilops squarrosa, II. Synthesized 6x wheat employed as test varieties. Jpn J Genet 37:227–236

    Google Scholar 

  • Nishikawa K, Furuta Y, Wada T (1980) Genetic studies on alpha-amylase isozymes in wheat. III. Intraspecific variation in Aegilops squarrosa and birthplace of hexaploid wheat. Jpn J Genet 55:325–336

    Google Scholar 

  • Nishikawa K (1983) Species relationships of wheat and its putative ancestors as viewed from isozyme variation. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium. Kyoto University, Kyoto, Japan, pp 59–63

    Google Scholar 

  • Nkongolo KK, Quick JS, Limin AE, Fowler DB (1991) Sources and inheritance of resistance to Russian wheat aphid in Triticum species, amphiploids and Triticum tauschii. Can J Plant Sci 71:703–708

    Google Scholar 

  • Noy-Meir I, Agami M, Anikster Y (1991) Changes in the population density of wild emmer wheat (Triticum turgidum var. dicoccoides) in a Mediterranean grassland. Isr J Bot 40:385–396

    Google Scholar 

  • Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah ES (2001) Molecular-genetic characterization of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    CAS  Google Scholar 

  • Ohsako T, Wang GZ, Miyashita NT (1996) Polymerase chain reaction-single strand conformational polymorphism analysis of intra- and interspecific variations in organellar DNA regions of Aegilops mutica and related species. Genes Genet Syst 71:281–292

    PubMed  CAS  Google Scholar 

  • Ohta S (2000) Genetic differentiation and post-glacial establishment of the geographical distribution in Aegilops caudata L. Genes Genet Syst 75:189–196

    PubMed  CAS  Google Scholar 

  • Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Inf Serv 5:6

    Google Scholar 

  • Olivera PD, Kolmer JA, Anikster Y, Steffenson BJ (2007) Resistance of Sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis 91:942–950

    Google Scholar 

  • Ortelli S, Winzeler H, Winzeler M, Fried PM, Nösberger J (1996) Leaf rust resistance gene Lr9 and winter wheat yield reduction: I. Yield and yield components. Crop Sci 36:1590–1595

    Google Scholar 

  • Özgen M, Yildiz M, Ulukan H, Koyuncu N (2004) Association of gliadin protein pattern and rust resistance derived from Aegilops umbellulata Zhuk. in winter Triticum durum Desf. Breed Sci 54:287–290

    Google Scholar 

  • Ozkan A, Levy A, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    PubMed  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Schaefer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19:1797–1801

    PubMed  CAS  Google Scholar 

  • Özkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94:260–264

    PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    PubMed  CAS  Google Scholar 

  • Ozkan H, Tuna M, Kilian B, Bloach FS, Mori N, Ohta S (in press) Genome size variation in diploid and tetraploid wild wheats. AoB Plants.

    Google Scholar 

  • Panajiotidis S, Athanasiadis N, Symeonidis L, Karataglis S (2000) Pollen morphology in relation to the taxonomy and phylogeny of some native Greek Aegilops species. Grana 39:126–132

    Google Scholar 

  • Panayotov I (1980) New cytoplasmic male sterility sources in common wheat: their genetical and breeding considerations. Theor Appl Genet 56:153–160

    Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F et al (2008) A physical map of the 1Gb bread wheat chromosome 3B. Science 322:101–104

    PubMed  CAS  Google Scholar 

  • Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Roeder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivum and Aegilops markgrafii addition lines. Theor Appl Genet 96:138–146

    CAS  Google Scholar 

  • Perretant M, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    CAS  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    CAS  Google Scholar 

  • Peterson R (1965) Wheat, botany, cultivation, and utilization. Leonard Hill Books and Interscience, London, UK

    Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    PubMed  CAS  Google Scholar 

  • Pietro ME, Tuleen NA, Hart GE (1988) Development of wheat –Triticum searsii disomic chromosome addition lines. In: Koebner R, Miller TE (eds) Proceedings of the 7th international wheat general symposium. Institute of Plant Science Research, Cambridge, UK, pp 409–413

    Google Scholar 

  • Pignone D, Galasso I, Hammer K, Perrino P (1992) Cytotaxonomy of Aegilops fragilis, a race from southern Italy. Hereditas 116:137–140

    Google Scholar 

  • Provan J, Wolters P, Caldwell KH, Powell W (2004) High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190

    PubMed  CAS  Google Scholar 

  • Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 144:1247–1262

    PubMed  CAS  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chrom Res 15:319

    Google Scholar 

  • Qiu YC, Sun XL, Zhou RH, Kong XY, Zhang SS, Jia JZ (2006) Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun 34:1267–1273

    CAS  Google Scholar 

  • Rahman S, Jolly JC, Skerritt JH, Wallosheck A (1994) Cloning of a wheat 15 kDA grain softness protein (GSP), GSP is a mixture of puroindoline-like polypeptides. Eur J Biochem 223:917–925

    PubMed  CAS  Google Scholar 

  • Raupp WJ, Gill BS, Browder LE (1983) Leaf rust resistance in Aegilops squarrosa L., its transfer and expression in common wheat (Triticum aestivum L.). Phytopathology 73:818–822

    Google Scholar 

  • Raupp WJ, Amri A, Hachett JH, Gill BS, Wilson DL, Cox TS (1993) Chromosomal location of Hessian fly resistance genes H22, H23 and H24 from Triticum tauschii in the D genome of wheat. J Hered 84:142–145

    Google Scholar 

  • Raupp WJ, Sukhwinder-Singh B-G, GL GBS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    CAS  Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labelled probes to map specific DNA sequence on wheat chromosomes. J Hered 76:78–81

    Google Scholar 

  • Rekika D, Zaharieva M, Stankova P, Xu X, Souyris I, Monneveux P (1998) Abiotic stress tolerance in Aegilops species. In: Nachit MM, Baum M, Porceddu E, Monneveux P, Picard E (eds) Durum research network, Proceedings of SEWANA, South Europe, West Asia and North Africa, ICARDA, Aleppo, Syria, pp 113–128

    Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2002) Repetitive DNAs of wild emmer wheat (Triticum dicoccoides) and their relation to S-genome species: molecular cytogenetic analysis. Genome 45:391–401

    PubMed  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823

    PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Riley R (1966) The genetic regulation of meiotic behaviour in wheat and its relatives. In: Mac Key J, (ed) Proceedings of 2nd international wheat genet symposium, Lund, Sweden. Hereditas 2:395–408

    Google Scholar 

  • Riley R, Chapman V, Macer RCF (1966) The homoeology of an Aegilops chromosome causing stripe rust resistance. Can J Genet Cytol 8:616–630

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res (Camb) 12:199–219

    Google Scholar 

  • Riley R, Chapman V, Miller TE (1971) Annual Report of Plant Breeding Institute, Cambridge (cited in Shepherd and Islam 1988)

    Google Scholar 

  • Riley R, Chapman V, Miller TE (1973) The determination of meiotic chromosome pairing. In: Proceedings of the 4th international wheat genetics symposium, Columbia, Missouri, USA, pp 731–738

    Google Scholar 

  • Rodriguez-Quijano M, Nieto-Taladriz MT, Carrillo JM (1996) Linkage mapping of prolamin and isozyme genes on the 1Sl chromosome of Aegilops longissima. Theor Appl Genet 93:295–299

    CAS  Google Scholar 

  • Rodriguez-Quijano M, Carrillo JM (1996) Relationship between allelic variation of Glu-1 and Gli-1/Glu-3 prolamin loci and gluten strength in hexaploid wheat. Euphytica 91:141–148

    Google Scholar 

  • Romero MD, Montes MJ, Sin E, Lopez-Brana I, Duce A, Martin-Sanchez á JA, Andrés MF, Delibes A (1998) A cereal cyst nematode (Heterodera avenae Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 96:1135–1140

    Google Scholar 

  • Rowland GC, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Google Scholar 

  • Saeidi H, Rahiminejad MR, Heslop-Harrison JS (2008) Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran. Ann Bot 101:855–861

    PubMed  CAS  Google Scholar 

  • Sakamoto S (1982) The Middle East as a cradle for crops and weeds. In: Holzner W, Numata N (eds) Biology and ecology of weeds. Dr. Junk, The Hague-Boston-London, pp 97–109

    Google Scholar 

  • Sakamura T (1918) Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum Arten. Bot Mag (Tokyo) 32:151–154

    Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Salina EA, Lim KY, Badaeva ED, Shcherban AB, Andrey B, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49:1023–1035

    PubMed  CAS  Google Scholar 

  • Sallares R, Brown TA (1999) PCR-based analysis of the intergenic spacers of the Nor loci on the A genomes of Triticum diploids and polyploids. Genome 42:116–128

    PubMed  CAS  Google Scholar 

  • Sallares R, Brown TA (2004) Phylogenetic analysis of complete 5´ external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae). Genet Resour Crop Evol 51:701–712

    CAS  Google Scholar 

  • Salse J, Chagué V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genom 9:555. doi:10.1186/1471-2164-9-555

    Google Scholar 

  • Sambasivam PK, Bansal UK, Hayden MJ et al. (2008) Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In: Appels R, Eastwood R, Lagudah ES, Langridge P, MacKay M, McIntyre L, Sharp P (eds) Proceedings of the 11th international wheat genetics symposium, Brisbane, Australia. http://ses.library.usyd.edu.au/handle/2123/3168

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize: dating the strata. Nat Genet 20:43–45

    PubMed  CAS  Google Scholar 

  • Sarkar P, Stebbins GI (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304

    Google Scholar 

  • Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet 92:928–934

    CAS  Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2002) Genetic diversity of wheat wild relatives in the near east detected by AFLP. Euphytica 127:81–93

    CAS  Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618

    PubMed  CAS  Google Scholar 

  • Sax K, Sax MJ (1924) Chromosome behaviour in a genus cross. Genetics 9:454–464

    PubMed  CAS  Google Scholar 

  • Schneider A, Linc G, Molnar I, Molnar-Lang M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat/Aegilops biuncialis disomic addition lines. Genome 48:1070–1082

    PubMed  Google Scholar 

  • Scholz H, van Slageren MW (1994) Proposal to conserve Aegilops caudata (Gramineae) with a conserved type. Taxon 43:293–296

    Google Scholar 

  • Schubert V, Blüthner WD (1995) Triticum aestivum-Aegilops markgrafii addition lines: production and morphology. In: Li ZS, Xin ZY (eds) Proceedings of the 8th wheat international genetics symposium. China Agricultural Scientech, Beijing, China, pp 421–425

    Google Scholar 

  • Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah ES (2001) The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theor Appl Genet 102:600–605

    CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Res Bull MO Agric Exp Stn 572:1–57

    Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans WJ, Peacock LT (eds) Wheat science – today and tomorrow. Cambridge University Press, Cambridge, UK, pp 75–89

    Google Scholar 

  • Sears ER (1983) The transfer to wheat of interstitial segments of alien chromosomes. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium. Plant Germplasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan, pp 5–12

    Google Scholar 

  • Sears ER, Gustafson JP (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901

    Google Scholar 

  • Seberg O, Frederiksen S (2001) A phylogenetic analysis of the monogenomic Triticeae (Poaceae) based on morphology. Bot J Linn Soc 136:75–97

    Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    CAS  Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Google Scholar 

  • Shepherd KW (1973) Homology of wheat and alien chromosomes controlling endosperm protein phenotypes. In: Sears ER, Sears LMH (eds) Proceedings of the 4th international wheat genetics symposium. University of Missouri, Columbia, Missouri, UK, pp 745–760

    Google Scholar 

  • Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat-alien chromosome lines. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, UK, pp 1373–1395

    Google Scholar 

  • Shindo C, Sasakuma T (2001) Early heading mutants of T. monococcum and Ae. squarrosa, A- and D-genome ancestral species of hexaploid wheat. Breed Sci 51:95–98

    CAS  Google Scholar 

  • Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA of Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    PubMed  CAS  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    CAS  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1:1–13

    CAS  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    PubMed  CAS  Google Scholar 

  • Smith CM, Starkey S (2003) Resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii synthetic wheats. J Econ Entomol 96:1571–1576

    PubMed  Google Scholar 

  • Snyder JR, Mallory-Smith CA, Balter S, Hansen JL, Zemetra RS (2000) Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci 48:588–593

    CAS  Google Scholar 

  • Song W, Xie H, Liu Q, Chaojie X, Ni Z, Yang T, Sun Q, Liu Z (2007) Molecular identification of Pm12-carrying introgression lines in wheat using genomic and EST-SSR markers. Euphytica 158:95–102

    CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leory P, Gautire MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Spetsov P, Mingeot D, Jacquemin JM, Samardjieva K, Marinova E (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93:49–54

    Google Scholar 

  • Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS, Lagudah ES (2000a) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101:1139–1144

    CAS  Google Scholar 

  • Spielmeyer W, Moullet O, Laroche A, Lagudah ES (2000b) High recombinogenic regions at seed storage protein loci on chromosome 1DS of Aegilops tauschii, the D-genome donor of wheat. Genetics 155:361–367

    PubMed  CAS  Google Scholar 

  • Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breed Sci 56:351–357

    Google Scholar 

  • Stolton S, Maxted N, Ford-Lloyd BV, Kell SP, Dudley N (2006) Food stores: using protected areas to secure crop genetic diversity. WWF Arguments for Protection Series, Gland, Switzerland

    Google Scholar 

  • Szücs P, Karsai I, von Zitzewitz J, Meszaros K, Cooper LL, Gu YQ, Chen TH, Hayes PM, Skinner JS (2006) Positional relationship between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277–1285

    PubMed  Google Scholar 

  • Szücs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen THH, Hayes PM (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics 277:249–261

    PubMed  Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2006) Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. x Aegilops tauschii Coss.). Crop Sci 46:1212–1217

    Google Scholar 

  • Takumi S, Nasuda S, Liu YG, Tsunewaki K (1993) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 1. Einkorn wheat. Jpn J Genet 68:73–79

    Google Scholar 

  • Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402–407

    CAS  Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886

    PubMed  CAS  Google Scholar 

  • Thuillet A-C, Bataillon T, Poirier S, Santoni S, David JL (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics169:1589–1599

    PubMed  CAS  Google Scholar 

  • Tranquilli G, Lijavetzky D, Muzzi G, Dubcovsky J (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol Gen Genet 262:846–850

    PubMed  CAS  Google Scholar 

  • Trethowan RM, Borja J, Mujeeb-Kazi A (2003) The impact of synthetic wheat on breeding for stress tolerance at CIMMYT. Annu Wheat Newsl 49:67–69

    Google Scholar 

  • Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    PubMed  CAS  Google Scholar 

  • Tsujimoto H, Tsunewaki K (1984) Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol 26:78–84

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1988) Gametocidal genes in wheat and its relatives. III. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat. Genome 30:239–244.

    Google Scholar 

  • Tsujimoto H (2005) Gametocidal genes in wheat as inducer of chromosome breakage. In: Tsunewaki K (ed) Frontiers of wheat bioscience, Wheat Information Service 100th Memorial Issue. Kihara Memorial Yokohama Foundation, Yokohama, Japan, pp 33–48

    Google Scholar 

  • Tsunewaki K (1982) Monosomic analysis on the fertility restoration by Triticum aestivum cv. Chinese Spring against Aegilops ovata cytoplasm. Jpn J Genet 57:513–525

    Google Scholar 

  • Tsunewaki K (1993) Genome-plasmon interactions in wheat. Jpn J Genet 68:1–34

    CAS  Google Scholar 

  • Tsunewaki K, Endo TR, Mukai Y (1974) Further discovery of alien cytoplasms inducing haploids and twins in common wheat. Theor Appl Genet 45:104–109

    Google Scholar 

  • Tsunewaki K, Ogihara Y (1983) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. II. On the origin of polyploidy wheat cytoplasm as suggested by chloroplast DNA restriction fragment patterns. Genetics 104:155–171

    PubMed  CAS  Google Scholar 

  • Tsunewaki K, Wang GZ, Matsuoka Y (1996) Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities. Genes Genet Syst 71:293–311

    PubMed  CAS  Google Scholar 

  • Tsunewaki K, Wang GZ, Matsuoka Y (2002) Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Syst 77:409–427

    PubMed  CAS  Google Scholar 

  • Tutin TG, Humphries CJ (1980) Aegilops L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 200–202

    Google Scholar 

  • Turnbull K, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S (2003) The organization of genes tightly linked to the Ha locus in Ae. tauschii, the D genome donor of wheat. Genome 46:330–336

    PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    PubMed  CAS  Google Scholar 

  • Vakhitov VA, Chemeris AV, Sabirzhanov BE, Akhunov ED, Kulikov AM, Nikonorov YM, Gimalov FR, Bikbulatova SM, Baymiev AK (2003) The phylogeny of Triticum L. and Aegilops L. inferred from comparative analysis of nucleotide sequences in rDNA promoter regions. Russ J Genet 39:1–11

    CAS  Google Scholar 

  • Valkoun J, Kucerova D, Bartos P, Hammer K (1985) Study of disease resistance in the genus Aegilops for its use in wheat breeding. In: Proceedings of the EUCARPIA genetics research section, international symposium, Prague, Czech Republic, pp 241–251

    Google Scholar 

  • Valkoun J, Damania AB (1992) Gliadin diversity in populations of Triticum urartu and T. dicoccoides in Syria. Reproductive biology and plant breeding. Book of Poster Abstracts. In: XIII EUCARPIA Congress, Angers, France

    Google Scholar 

  • Vanichanon A, Blake NK, Sherman JD, Talbert LE (2003) Multiple origins of allopolyploid Aegilops triuncialis. Theor Appl Genet 106:804–810

    PubMed  CAS  Google Scholar 

  • Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University Papers, Wageningen, Netherlands

    Google Scholar 

  • Vavilov NI (1951) Phytogeographic basis of plant breeding. In: The origin, variation, immunity and breeding of cultivated plants. (Chester KS, transl.). Chron Bot 13:14–54

    Google Scholar 

  • Von Zitzewitz J, Szücs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen THH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    CAS  Google Scholar 

  • Waines JG, Rafi MM, Ehdaie B (1993) Yield components and transpiration efficiency in wild wheats. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, UK, pp 173–186

    Google Scholar 

  • Waines JG (1994) High temperature in wild wheats and spring wheats. Aust J Plant Physiol 21:705–715

    Google Scholar 

  • Waines JG, Hegde SG (2003) Intraspecific gene flow in bread wheat (Triticum aestivum L.) as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci 43:451–463

    Google Scholar 

  • Wang GZ, Miyashita N, Tsunewaki K (1997) Plasmon analysis of Triticum (wheat) and Aegilops: PCR-single strand conformation polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94:14570–14577

    PubMed  CAS  Google Scholar 

  • Wang JB, Wang C, Shi SH, Zhong Y (2000) Evolution of parental ITS regions of nuclear rDNA in allopolyploid Aegilops (Poaceae) species. Hereditas 133:1–7

    PubMed  CAS  Google Scholar 

  • Wang T, Xu SS, Harris MO, Hu J, Liu L, Xiwen C (2006) Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 113:611–618

    PubMed  CAS  Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1608–1610

    PubMed  CAS  Google Scholar 

  • Wells DG, Kota RS, Sandhu HS, Gardner WAS, Finney KF (1982) Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat streak mosaic virus. Crop Sci 22:1277–1278

    Google Scholar 

  • Weng Y, Lazar MD (2002) Amplified fragment length polymorphism-and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breed 121:218–223

    CAS  Google Scholar 

  • Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469

    PubMed  CAS  Google Scholar 

  • Whitcombe, JR, 1983. A guide to the species of Aegilops L.: their taxonomy, morphology, and distribution. International Board for Plant Genetic Resources (IPGRI), Rome, Italy, 74p

    Google Scholar 

  • Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genom 7:275

    Google Scholar 

  • William MDHM, Pena RJ, Mujeeb-Kazi A (1993) Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet 87:257–263

    CAS  Google Scholar 

  • Worland A (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898

    CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blech A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafed M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an ortholog of FT. Proc Natl Acad Sci USA 103:19581–19586

    PubMed  CAS  Google Scholar 

  • Yang Y-C, Tuleen NA, Hart GE (1996) Isolation and identification of Triticum aestivum L. em. Thell. cv. Chinese Spring – T. peregrinum Hackel disomic chromosome addition lines. Theor Appl Genet 92:591–598

    Google Scholar 

  • Yinhuai Z, Zhengqiang M, Dajun L (1991) Transfer of restoring gene in Aegilops umbellulata to wheat. J Genet Genomics 18:529–536

    Google Scholar 

  • Yu MQ, Jahier J, Person-Dedryver F (1990) Chromosomal location of a gene (Rkn-mnl) for resistance to the root-knot nematode transferred into wheat from Aegilops variabilis. Plant Breed 114:358–360

    Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    CAS  Google Scholar 

  • Zaharieva M, Monneveux P (2006) Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci 46:512–527

    Google Scholar 

  • Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    CAS  Google Scholar 

  • Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75

    CAS  Google Scholar 

  • Zhang H, Reader SM, Liu X, Jia JZ, Gale MD, Devos KM (2001) Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor Appl Genet 103:518–525

    CAS  Google Scholar 

  • Zhang W, Qu LJ, Gu H, Gao W, Liu M, Chen J, Chen Z (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor Appl Genet 104:1099–1106

    PubMed  CAS  Google Scholar 

  • Zhang LY, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P (2006) Transferable bread wheat EST-SSR can be useful for phylogenetic studies among the Triticeae species. Theor Appl Genet 113:407–418

    PubMed  CAS  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko EV, Flinn MB (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor Appl Genet 109:289–293

    PubMed  CAS  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko E (2005) Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasm derived from Aegilops tauschii. Theor Appl Genet 111:831–837

    PubMed  CAS  Google Scholar 

  • Zhu Z, Zhou R, Kong X, Dong Y, Jia J (2006) Microsatellite marker identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica 150:149–153

    CAS  Google Scholar 

  • Zhukovsky PM (1928) Kritiko-systematicheskii obzor vidov roda Aegilops L. (Specierum generis Aegilops L. revisio critica). Trudy Prikl Bot Genet Selekc [Bull Appl Bot Genet and Plant Breed] 18:417–609

    Google Scholar 

  • Zohary D, Feldman M (1962) Hybridisation between amphiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Google Scholar 

Download references

Acknowledgments

We are grateful to the “Ökotop GbR” company (Halle, Germany) and Alexander Walther for preparing the GIS based distribution maps. We thank Bärbel Schmidt, Ulrike Lohwasser, Matthias Kotter, and Klaus Pistrick (all at IPK Gatersleben) for providing Aegilops photographs.

The authors are indebted to Moshe Feldman, Sigi Effgen, Andrea Brandolini, Naoki Mori, Shoji Ohta, George Willcox, Bill Martin, Reinder Neef, Ofer Bar-Yosef, Katia Badaeva, Klaus Schmidt, Peter Schreiber, Jürgen Marlow, Michael Grau, Helmut Knüpffer, Andreas Börner, and all the participants at the workshop “Cereal Diversity, Plant Domestication and Human History in the Fertile Crescent” in Turkey, 2009, for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Kilian .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 15 Index to scientific names used for this chapter = Register of species names

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kilian, B. et al. (2011). Aegilops. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_1

Download citation

Publish with us

Policies and ethics