Skip to main content
Log in

Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss.

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genealogical and geographic structure of variation in spikelet morphology was analyzed for central Eurasian wild wheat Aegilops tauschii Coss. using a diverse array of 203 sample accessions that represented the entire species range. In this sample set, two subspecies were identified on the basis of sensu-stricto criteria: only the accessions having markedly moniliform spikes were assigned to Ae. tauschii Coss. subspecies strangulata (Eig) Tzvel., whereas those having mildly moniliform and cylindrical spikes to Ae. tauschii Coss. subspecies tauschii. In a graph of the first two axes from a principal component analysis based on nine spikelet traits, the plots of the two subspecies formed separate clusters, indicating that subspecies strangulata sens. str. is a practically usable taxon. Chloroplast-DNA-based genealogical analyses suggested that subspecies strangulata diverged from an ancestor that carried a specific chloroplast DNA type, whereas, after divergence, this subspecies became polyphyletic, likely through hybridization. Geographically, significant longitudinal and latitudinal clines were detected for spikelet size, with spikelets tending to be small in the eastern and southern regions. These results shed some light on the patterns of subspecies divergence and spikelet-shape diversification in the course of Ae. tauschii’s long-distance dispersal from the Transcaucasus to China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghaei MJ, Mozafari J, Taleei AR, Naghavi MR, Omidi M (2008) Distribution and diversity of Aegilops tauschii in Iran. Genet Resour Crop Evol 55:341–349

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 141:743–753

    PubMed  CAS  Google Scholar 

  • Dudnikov A (2000) Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour Crop Evol 47:185–190

    Article  Google Scholar 

  • Dudnikov A, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586

    Article  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Repertorium specierum novarum regni vegetabilis Beih 55:1–228

    Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Gororo NN, Eagles HA, Eastwood RF, Nicolas ME, Flood RG (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241–254

    Article  Google Scholar 

  • Hammer K (1978) Blütenökologische Merkmale und Reproduktionssystem von Aegilops tauschii Coss. (syn. Ae. squarrosa L.). Kulturpflanze 26:271–282

    Article  Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Innes RL, Kerber ER (1994) Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 37:813–822

    PubMed  CAS  Google Scholar 

  • Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904

    Article  CAS  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Pl Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (abstr) (in Japanese). Agric Hortic 19:889–890

    Google Scholar 

  • Kihara H, Yamashita K, Takaka M (1965) Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In: Yamashita K (ed) Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, 1955, vol I. Kyoto University, Kyoto, pp 1–118

    Google Scholar 

  • Knaggs P, Ambrose MJ, Reader SM, Miller TE (2000) Morphological characterization and evaluation of the subdivision of Aegilops tauschii Coss. Wheat Inf Serv 91:15–19

    Google Scholar 

  • Lagudah ES, Halloran GM (1988) Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. Theor Appl Genet 75:592–598

    Article  CAS  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  PubMed  CAS  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  • Malik R, Michael Smith C, Brown-Guedira GL, Harvey TL, Gill BS (2003) Assessment of Aegilops tauschii for resistance to biotypes of wheat curl mite (Acari: Eriophyidae). J Econ Entomol 96:1329–1333

    Article  PubMed  Google Scholar 

  • Matsuoka Y, Mori N, Kawahara T (2005) Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor Appl Genet 111:265–271

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2007) Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor Appl Genet 115:509–518

    Article  PubMed  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008a) Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii (Poaceae): genealogical and ecological framework. PLoS One 3(9):e3138

    Google Scholar 

  • Matsuoka Y, Aghaei MJ, Abbasi MR, Totiaei A, Mozafari J, Ohta S (2008b) Durum wheat cultivation associated with Aegilops tauschii in northern Iran. Genet Resour Crop Evol 55:861–868

    Article  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta (abstr). Rec Genet Soc Am 13:26–27

    Google Scholar 

  • Nishikawa K, Furuta Y, Wada T (1980) Genetic studies on α-amylase isozymes in wheat. III. Intraspecific variation in Aegilops squarrosa and birthplace of hexaploid wheat. Jpn J Genet 55:325–336

    Article  Google Scholar 

  • Pestsova E, Korzun V, Gonchrov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Tabertlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  Google Scholar 

  • Tanaka M, Tsujimoto H (1991) Natural habitat of Aegilops squarrosa in Xinjiang Uygur, China. Wheat Inf Serv 73:33–35

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Van Slageren MW (1994) Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, pp 326–344

    Google Scholar 

  • Yen C, Yang JL, Liu XD, Li LR (1983) The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat. In: Sakamoto S (ed) Proceedings of 6th International Wheat Genetics Symposium, Kyoto, Japan, pp 55–58

Download references

Acknowledgments

We thank J. Valkoun (ICARDA), J. Konopka (ICARDA), H. Bockelman (USDA), A. Graner (IPK), L. Visser (CGN), and K. Kato (Okayama Univ.) for the Ae. tauschii accession seeds. This work was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Basic Research A, No. 17201045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takumi.

Additional information

Y. Matsuoka and E. Nishioka have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, Y., Nishioka, E., Kawahara, T. et al. Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss.. Plant Syst Evol 279, 233–244 (2009). https://doi.org/10.1007/s00606-009-0159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0159-7

Keywords

Navigation