Skip to main content
Log in

Aegilops tauschii Coss. chloroplast genome phylogeny

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The chloroplast genome phylogeny of Aegilops tauschii was studied. The sequences of four regions of non-coding chloroplast DNA (cpDNA), about 3000 b.p. in total, in 111 Ae. tauschii accessions, 55 of subspecies tauschii (TauL1) and 56 of subspecies strangulata (2 of TauL3 and 54 of TauL2 gene-pool), were used for neighboring joint and maximum likelihood analysis. This revealed that the patterns of cpDNA divergence essentially differ from those of nuclear genome in Ae. tauschii, coinciding only at TauL3, indicating that the chloroplast genome of TauL3 Ae. tauschii differentiated from those of other Ae. tauschii in ancient times. Among the other Ae. tauschii, Taul1 plants have relatively “older” variants of chloroplast genome; moreover, from 55 TauL1 accessions studied, the four accessions originating from the edges of the species area retained the relict variant of cpDNA, with no indels or base pair substitution having taken place in about 3000 b.p. studied, since the differentiation of TauL1 and TauL2 started. Most of TauL1 plants form a cluster with rather similar cpDNA, which also included eight of 54 Taul2 accessions studied, all originating from Caucasia and pre-Caspian Iran. The other 46 TauL2 accessions form a single cluster residing on the tree among the major and several minor, relict, lineages of TauL1. This cluster presents relatively “young”, considerably changed by mutations, and also highly variable cpDNA. It further falls in the two sub-clusters: one presents TauL2 Ae. tauschii from South Caucasia and pre-Caspian Iran, and another—with TauL2 from Caucasia, Continental Iran and Turkmenistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

cpDNA:

Chloroplast DNA

DArT:

Diversity arrays technology

ML:

Maximum likelihood

NJ:

Neighbor-joining

PCR:

Polymerase chain reaction

RFLP:

Restriction fragment length polymorphism

SSR:

Simple sequence repeat

References

  • Barton NH, Briggs DG, Eisen JA, Goldstein D, Patel NH (2007) Evolution. Cold Spring Harbor, New York

    Google Scholar 

  • Bender W, Pierre S, Hognes DS, Chambona P (1983) Chromosomal walking and jumping to isolate DNA from Ace and rosy loci of bithorax loci in Drosophila melanogaster. J Mol Biol 168:17–33

    Article  CAS  PubMed  Google Scholar 

  • Dudnikov AJ (1998) Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80:248–258

    Article  Google Scholar 

  • Dudnikov AJ (2000) Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour Crop Evol 47:185–190

    Article  Google Scholar 

  • Dudnikov AJ (2003) Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129:89–97

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2012) Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species. Genet Resour Crop Evol 59:683–699

    Article  Google Scholar 

  • Dudnikov AJ (2014) Aegilops tauschii Coss.: allelic variation of enzyme-encoding genes and ecological differentiation of the species. Genet Resour Crop Evol 61:1329–1344

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2017) Polymorphism of Got2 DNA sequences sheds light on Aegilops tauschii Coss. intraspecies divergence and origin of Triticum aestivum L. Genet Resour Crop Evol 64:1623–1640

    Article  CAS  Google Scholar 

  • Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586

    Article  Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Repertorium Speciorum Novarum Regni Vegetabilis. Beihefte 55:1–228

    Google Scholar 

  • Gogniashvili M, Jinjikhadze T, Maisaia I, Akhalkatsi M, Kotorashvili A, Kotaria N, Beridze T, Dudnikov AJ (2016) Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. Curr Genet 62:791–798

    Article  CAS  PubMed  Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–284

    Article  CAS  PubMed  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase enzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Ozkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer, Berlin, pp 1–76

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat. An introduction. Special report 353. College of Agricultural University of Missouri, Columbia, pp 1–142

  • Kirby J, Vinh HT, Reader SM, Dudnikov AJ (2005) Genetic mapping of the Acph1 locus in Aegilops tauschii. Plant Breed 124:523–524

    Article  CAS  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Article  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008) Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS ONE 3(9):e3138. https://doi.org/10.1371/journal.pone.0003138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Nishioka E, Kawahara T, Takumi S (2009) Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst Evol 279:233–244

    Article  Google Scholar 

  • Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T (2013) Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS ONE 8:e68310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S (2010) Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 19:999–1013

    Article  PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Roder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Saeidi H, Tabatabaei BES, Rahimmalek M, Talebi-Badaf M, Rahiminejad MR (2008) Genetic diversity and gene-pool subdivisions of diploid D-genome Aegilops tauschii Coss. (Poaceae) in Iran as revealed by AFLP. Genet Resour Crop Evol 55:1231–1238

    Article  CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49(2):369–381

    Article  CAS  PubMed  Google Scholar 

  • Sohail Q, Shehzad T, Kilian A, Eltayeb AE, Tanaka H, Tsujimoto H (2012) Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breed Sci 62:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takumi S, Mizuno N, Okumura Y, Kawahara T, Matsuoka Y (2008) Two major lineages of Aegilops tauschii Coss. revealed by nuclear DNA variation analysis. In: Appels R et al (ed) The 11th international wheat genetics symposium proceedings. Sydney University Press, Sydney, Australia. http://hdl.handle.net/2123/3432. Accessed 1 Feb 2018

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). Wagenningen Agricultural University Papers, Wageningen, The Netherlands

  • Wang J, Luo M, Chen Z, You F, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937. https://doi.org/10.1111/nph.12164

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92(11):1887–1898

    Article  CAS  PubMed  Google Scholar 

  • Zhukovsky PM (1928) A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot Genet Plant Breed 18:417–609 (in Russian)

    Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to Miss. Rinata R. Husainova and Dr. Oleg V. Vaulin for the help in the course of this study. I am also very grateful to Dr. Stephen M. Reader for the help in preparation of the manuscript.

Funding

The work was supported by Russian Foundation for Basic Research, Grant 16-04-00106-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ju. Dudnikov.

Ethics declarations

Conflict of interest

Author Alexander Ju. Dudnikov declares that he has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1s (supplement).

Neighbor-Joining phylogenetic tree of Aegilops tauschii chloroplast DNA. DNA sequences were treated “as is” by MEGA 6. Gaps were treated using “partial deletion” option. Ae. tauschii accessions k-433, k-1956s, k-1960, k-1961, KU-20-8, KU-2118, KU-2123, KU-2126, KU-2156 have inversion Nf(i)225b (Dudnikov 2012), and since it is treated here de facto as a set of independent base pair substitutions, its impact is overestimated greatly. (See also designations in the caption for Fig. 1). (JPEG 2354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikov, A.J. Aegilops tauschii Coss. chloroplast genome phylogeny. J. Plant Biochem. Biotechnol. 28, 245–252 (2019). https://doi.org/10.1007/s13562-018-0469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0469-3

Keywords

Navigation