Skip to main content
Log in

Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Intraspecific patterns of chloroplast DNA variation was studied in Aegilops tauschii Coss., the D-genome progenitor of bread wheat. Nucleotide sequences of ten chloroplast microsatellite loci were analyzed for 63 accessions that cover the central part of the species distribution. As is often the case with nuclear microsatellites, those of chloroplasts of Ae. tauschii bear complex mutations. Several types of mutations other than change in the microsatellite repeat number were found, including base substitutions and length mutations in flanking regions. In total, eight mutations were present in the flanking regions of four loci. Most mutations in the flanking regions of microsatellite repeats are associated with biallelic polymorphisms. Phylogeographic analyses showed that such biallelic polymorphisms are useful to investigate intraspecific patterns of monophyletic lineage divergence. In contrast, most microsatellite repeat sites are multiallelic, variable within intraspecific lineages, and useful to compare degrees of genetic diversity between lineages. These findings show that the chloroplast genome harbors evolutionary variations informative for intraspecific studies of Ae. tauschii and can be analyzed by genealogical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandelt HJ, Foster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 141:743–753

    CAS  PubMed  Google Scholar 

  • Bosch E, Calafell F, Santos FR, Pérez-Lezaun A, Comas D, Benchemsi N, Tyler-Smith C, Bertranpetit J (1999) Variation in short tandem repeats is deeply structured by genetic background on the human Y chromosome. Am J Hum Genet 65:1623–1638

    Article  CAS  PubMed  Google Scholar 

  • Colson I, Goldstein DB (1999) Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152:617–627

    CAS  PubMed  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Morgante M, Tingey SV, Powell W (1998) Size homoplasy in chloroplast microsatellites of wild perennial relatives of soybean (Glycine subgenus Glycine). Mol Biol Evol 15:215–218

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AH (1999) Incongruence in the diploid B-genome species complex of Glycine (Leguminosae) revisited: histone H3-D alleles versus chloroplast haplotypes. Mol Biol Evol 16:354–362

    CAS  PubMed  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered 88:335–342

    CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Hale ML, Borland AM, Gustafsson MHG, Wolff K (2004) Causes of size homoplasy among chloroplast microsatellites in closely related Clusia species. J Mol Evol 58:182–190

    Article  CAS  PubMed  Google Scholar 

  • Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, Liu YZ, Li JL, Recker RR, Deng HW (2002) Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genet 70:625–634

    Article  CAS  PubMed  Google Scholar 

  • Hurles ME, Jobling MA (2001) Haploid chromosomes in molecular ecology: lessons from the human Y. Mol Ecol 10:1599–1613

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904

    Article  CAS  Google Scholar 

  • Kawahara T (1997) Aegilops squarrosa. In: Kawahara T (ed) Catalogue of AegilopsTriticum germ-plasm preserved in Kyoto University, 1997. Plant Germ-plasm Institute, Kyoto University, Kyoto, pp 106–112

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (abstract) (in Japanese). Agric Hort (Tokyo) 19:889–890

    Google Scholar 

  • Kihara H, Yamashita K, Tanaka M (1965) Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In: Yamashita K (ed) Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, vol I. Kyoto University, Kyoto, pp 1–118

  • de Knijff P, Kayser M, Caglià A et al (1997) Chromosome Y microsatellites: population genetic and evolutionary aspects. Int J Legal Med 110:134–140

    Article  PubMed  Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  CAS  PubMed  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta (abstract) Rec Genet Soc Am 13:26–27

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    CAS  PubMed  Google Scholar 

  • Nishimoto Y, Ohnishi O, Hasegawa M (2003) Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae). Genes Genet Syst 78:139–153

    Article  CAS  PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Provan J, Powell W, Mollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Provan J, Wolters P, Caldwell KH, Powell W (2004) High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    CAS  PubMed  Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618

    Article  CAS  PubMed  Google Scholar 

  • Slageren MW van (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub.& Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, pp 326–344

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tsunewaki K (1993) Genome-plasmon interactions in wheat. Jpn J Genet 68:1–34

    CAS  Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Kluwer Academic, Boston, pp 265–296

    Google Scholar 

Download references

Acknowledgements

We thank T. Ishii for his help with the data analyses. This work was supported by a Sumitomo Foundation Grant (no. 020151) to Y.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Matsuoka.

Additional information

Communicated by B. Friebe

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, Y., Mori, N. & Kawahara, T. Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss.. Theor Appl Genet 111, 265–271 (2005). https://doi.org/10.1007/s00122-005-2020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2020-x

Keywords

Navigation