Skip to main content
Log in

Occurrence of complex type free N-glycans with a single GlcNAc residue at the reducing termini in the fresh-water plant, Egeria densa

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In our previous study, we found unique free N-glycans (FNGs), which carry a single GlcNAc residue (GN1) at the reducing-end side and the Lewis-a epitope at the non-reducing-end side, in the culture broth of rice cells. Based on the FNG structural features and the substrate specificity of plant ENGase, we hypothesized that there might be a novel biosynthetic mechanism responsible for the production of these unique GN1-FNGs, in which high-mannose type (HMT)-GN1-FNGs produced in the cytosol from misfolded glycoproteins by ENGase are transported back into the endoplasmic reticulum and processed to plant complex type (PCT)-GN1-FNGs in the Golgi apparatus. Until now, however, PCT-GN1-FNGs had only been found in the culture broth of rice cultured cells and never in plants, suggesting that the formation of PCT-GN1-FNGs might be generated under special or artificial conditions. In this study, we confirm the presence of PCT-GN1-FNGs, HMT-GN1-FNGs and PCT-GN2-FNGs in the fresh-water plant Egeria densa. These results suggest that a mechanism responsible for the production of PCT-GN1-FNG is present in native plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

ENGase:

endo-β-N-acetylglucosaminidase

PNGase:

peptide:N-glycanase

FNG:

Free N-glycan

GN1-FNG:

Free N-glycan bearing one GlcNAc residue at the reducing end side

GN2-FNG:

Free N-glycan bearing two GlcNAc residues at the reducing end side

HMT-FNG:

High-mannose type FNG

PCT-FNG:

Plant complex type FNG

PA-:

Pyridylamino

RP-HPLC:

Reversed-phase HPLC

SF-HPLC:

Size-fractionation HPLC

ESI-MS:

Electrospray ionization mass spectrometry

MS/MS:

Tandem mass

Hex:

Hexose

DeoxHex:

Deoxyhexose

HexNAc:

N-acetyl-D-hexosamine

Pen:

Pentose

Man:

D-mannose

Gal:

D-galactose

GlcNAc:

N-acetyl-D-glucosamine

M3XGN1:

Manα1-6(Manβ1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA

GN2M3XGN1:

GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA

Gal1GN2M3XGN1:

Galβ1-3GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA or GlcNAcβ1-2Manα1-6(Galβ1-3GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA

Gal1Fuc1GN2M3XGN1:

Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA or GlcNAcβ1-2Manα1-6(Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA

Gal2Fuc1GN2M3XGN1:

Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-6(Galβ1-3GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA or Galβ1-3GlcNAcβ1-2Manα1-6(Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA

Gal2Fuc2GN2M3XGN1:

Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-6(Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAc-PA

GN2M3XGN2:

GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4GlcNAc-PA

Gal1GN2M3XGN2:

Galβ1-3(GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4GlcNAc-PA or GlcNAcβ1-2Manα1-6(Galβ1-3GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4GlcNAc-PA

References

  1. Suzuki, T., Funakoshi, Y.: Free N-linked oligosaccharide chains: formation and degradation. Glycoconj. J. 23, 291–302 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Chantret, I., Moore, S.E.: Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology. 18, 210–224 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Maeda, M., Kimura, Y.: Structural features of free N-glycans occurring in plants and functional features of de-N-glycosylation enzymes, ENGase, and PNGase: the presence of unusual plant complex type N-glycans. Front. Plant Sci. 5, 429 (2014)

    PubMed  PubMed Central  Google Scholar 

  4. Fischl, R.M., Stadlmann, J., Grass, J., Altman, F., Léonard, R.: The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels. Plant Mol. Biol. 77, 275–284 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Kimura, Y., Takeoka, Y., Maeda, M., Fujiyama, K.: Double knockout of putative endo-β-N-acetylglucosaminidase (ENGase) genes in Arabidopsis thaliana: loss of ENGase activity induced accumulation of high-mannose type free N-glycans bearing N,N′-acetylchitobiosyl unit. Biosci. Biotechnol. Biochem. 74, 1019–1021 (2011)

    Article  Google Scholar 

  6. Takahashi, N., Nishibe, H.: Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages. J. Biochem. 84, 1467–1473 (1978)

    Article  CAS  PubMed  Google Scholar 

  7. Sugiyama, K., Ishihara, H., Tejima, S., Takahashi, N.: Demonstration of a new glycopeptidase, from jack-bean meal, acting on aspartylglucosylamine linkages. Biochem. Biophys. Res. Commun. 112, 155–160 (1983)

    Article  CAS  PubMed  Google Scholar 

  8. Lhernould, S., Karamanos, Y., Lerouge, P., Morvan, H.: Characterization of the peptide-N 4-(N-acetylglucosaminyl) asparagine amidase (PNGase Se) from Silene alba cells. Glycoconj. J. 12, 94–98 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Berger, S., Menudier, A., Julien, R., Karamanos, Y.: Endo-N-acetyl-β-d-glucosaminidase and peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry. 39, 481–487 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Altman, F., Paschinger, K., Daliki, T., Vorauer, K.: Characterisation of peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase A and its N-glycans. Eur. J. Biochem. 252, 1182123 (1998)

    Google Scholar 

  11. Kimura, Y., Ohno, A.: A new peptide-N4-(acetyl-β-glucosaminyl)asparagine amidase from soybean seeds. Biosci. Biotechnol. Biochem. 62, 412–418 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Priem, B., Gitti, R., Bush, C.A., Gross, K.C.: Structure of ten free N-glycans in ripening tomato fruit. Plant Physiol. 102, 445–458 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faugeron, C., Lhernould, S., Lemoine, J., Costa, G., Morvan, H.: Identification of unconjugated N-glycans in strawberry plants. Plant Physiol. Biochem. 35, 891–895 (1997)

    CAS  Google Scholar 

  14. Faugeron, C., Lhernould, S., Maes, E., Lerouge, P., Strecker, G., Morvan, H.: Tomato plant leaves also contain unconjugated N-glycans. Plant Physiol. Biochem. 35, 73–79 (1997)

    CAS  Google Scholar 

  15. Kimura, Y., Takagi, S., Shiraishi, T.: Occurrence of free N-glycans in pea (Pisum sativum. L) seedlings. Biosci. Biotechnol. Biochemist. 61, 924–926 (1997)

    CAS  Google Scholar 

  16. Kimura, Y., Matsuo, S.: Free N-glycans already occur at an early stage of seed development. J. Biochem. 127, 1013–1019 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. Kimura, Y., Kitahara, E.: Structural analysis of free N-glycans occurring in soybean seedlings. Biosci. Biotechnol. Biochem. 64, 2109–2120 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Maeda, M., Mariko, K., Kimura, Y.: Intracellular and extracellular free N-glycans produced by plant cells: occurrence of unusual plant complex-type free N-glycans in extracellular spaces. J. Biochem. 148, 681–692 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Nishiyama, A., Nishimoto, T., Yamaguchi, H.: A novel endo-β-N-acetylglucosaminidase from shoots of Phyllostachys heterocycla var. pubescens. Agric. Biol. Chem. 55, 1155–1158 (1991)

    CAS  Google Scholar 

  20. Berger, S., Menudier, A., Julien, R., Karamanos, Y.: Do de-N-glycosylation enzymes have an important role in plant cells? Biochimie. 77, 751–760 (1995)

    Article  CAS  PubMed  Google Scholar 

  21. Vuyisteker, C., Cuvellier, G., Berger, S., Faugeron, C., Karamanos, Y.: Evidence of two enzymes performing the de-N-glycosylation of proteins in barley: expression during germination, localization within the grain and set-up during grain formation. J. Exp. Bot. 51, 839–845 (2000)

    Google Scholar 

  22. Kimura, Y., Matsuo, S., Takagi, S.: Enzymatic properties of a Ginkgo biloba endo-β-N-acetylglucosaminidase and N-glycan structures of storage glycoproteins in the seeds. Biosci. Biotechnol. Biochem. 62, 253–261 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Kimura, Y., Tokuda, T., Ohno, A., Tanaka, H., Ishiguro, Y.: Enzymatic properties of endo-β-N-acetylglucosaminidase from developing tomato fruits and soybean seeds: substrate specificity of plant origin endoglycosidase. Biochim. Biophys. Acta. 1381, 27–36 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Maeda, M., Tani, M., Yoshiie, T., Vavrickaå, J.C., Kimura, Y.: Structural features of N-glycans linked to glycoproteins expressed in three kinds of water plants: predominant occurrence of the plant complex type N-glycans bearing Lewis a epitope. Carbohydr. Res. 435, 50–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Kimura, Y., Hase, S., Kobayashi, Y., Kyogoku, Y., Ikenaka, T., Funatsu, G.: Structures of sugar chains of ricin D. J. Biochem. 103, 944–949 (1988)

    Article  CAS  PubMed  Google Scholar 

  26. Dubois, M., Gilles, K.A., Hamilton, J.K., Robers, P.A., Smith, F.: Colorimetric method for determination of sugar and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  CAS  Google Scholar 

  27. Natsuka, S., Hase, S.: Analysis of N- and O-glycans by pyridylamination. Methods Mol. Biol. 76, 101–113 (1998)

    CAS  PubMed  Google Scholar 

  28. Maeda, M., and Kimura, Y. Structural and functional features of plant glycoprotein glycans In “Chemistry, Molecular Sciences and Engineering” (Reedijk, J., ed). 2013: pp 2–15, Elsevier. doi:10.1016/B978-0-12-409547-2.01500-6.

  29. Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y., Inoue, S.: Fish egg glycophosphoproteins have species-specific N-glycan units previously found in a storage pool of free glycan chains. J. Biol. Chem. 267, 24287–24296 (1992)

    CAS  PubMed  Google Scholar 

  30. Ohashi, K., Iwai, K., Mega, T., Hase, S.: Quantitation and isomeric structure analysis of free oligosaccharides present in the cytosol fraction of mouse liver: detection of a free disialobiantennary oligosaccharide and glucosylated oligomannosides. J. Biochem. 126, 852–858 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Moriguchi, K., Takemoto, T., Aoki, T., Nakakita, S., Natsuka, S., Hase, S.: Free oligosaccharides with Lewis x structure expressed in the segmentation period of zebrafish embryo. J. Biochem. 142, 213–227 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Kato, T., Fujita, K., Takeuchi, M., Kobayashi, N., Natsuka, S., Ikura, K., Kumagai, H., Yamamoto, K.: Identification of an endo-β-N-acetylglucosaminidase gene in Caenorhabditis elegans and its expression in Escherichia coli. Glycobiology. 12, 581–587 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. Ishizuka, A., Hashimoto, Y., Naka, R., Kinoshita, M., Kakehi, K., Seino, J., Funakoshi, Y., Suzuki, T., Kameyama, A., Narimatsu, H.: Accumulation of free complex-type N-glycans in MKN7 and MKN45 stomach cancer cell. Biochem. J. 413, 227–237 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Seino, J., Wang, L., Harada, Y., Huang, C., Ishi, K., Mizushimz, N., Suzuki, T.: Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J. Biol. Chem. 288, 26898–26907 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato, T., Kitamura, K., Maeda, M., Kimura, Y., Katayama, T., Ashida, H., Yamamoto, K.: Free oligosaccharides in the cytosol of Caenorhabdiitis elegans are generated through endoplasmic reticulum-Golgi trafficking. J. Biol. Chem. 282, 22080–22088 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Su, W., Liu, Y., Xia, Y., Hong, Z., Li, J.: The arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases. Mol. Plant. 5, 929–940 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hüttner, S., Veit, C., Schoberer, J., Grass, J., Strasser, R.: Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins. Plant Mol. Biol. 79, 21–33 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oku, H., Hase, S.: Studies on the substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct by using sugar chains from glycoproteins. J. Biochem. 110, 982–989 (1991)

    Article  CAS  PubMed  Google Scholar 

  39. Kumano, M., Omichi, K., Hase, S.: Substrate specificity of bovine liver cytosolic neutral alpha-mannosidase activated by Co2+. J. Biochem. 119, 991–997 (1996)

    Article  CAS  PubMed  Google Scholar 

  40. Yamashiro, K., Itoh, H., Yamagishi, M., Natsuka, S., Mega, T., Hase, S.: Purification and characterization of neutral α-mannosidase from hen oviduct: studies on the activation mechanism of Co2+. J. Biochem. 122, 1174–1181 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki, T., Hara, I., Nakano, M., Shigeta, M., Nakagawa, T., Kondo, A., Funakoshi, Y., Taniguchi, N.: Man2C1, an α-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol. Biochem. J. 400, 33–41 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harada, Y., Buser, R., Ngwa, E.M., Hirayama, H., Abei, M., Suzuki, T.: Eukaryotic oligosaccharyltransferase genenerates free oligosaccharides during N-glycosylation. J. Biol. Chem. 288, 32673–32684 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harada, Y., Masahara-Negishi, Y., Suzuki, T.: Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells. Glycobiology. 25, 1196–1205 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Basic Research C (no. 24580494) and Fostering Joint International Research (no. 15 K07841) to M.M.), Research Grants of Mizutani Foundation for Glycoscience (to Y.K.). We are grateful to the Department of Instrumental Analysis, Advanced Science Research a nonsensical phrase Center, Okayama University, for ESI-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Kimura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, M., Ebara, N., Tani, M. et al. Occurrence of complex type free N-glycans with a single GlcNAc residue at the reducing termini in the fresh-water plant, Egeria densa . Glycoconj J 34, 229–240 (2017). https://doi.org/10.1007/s10719-016-9758-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9758-z

Keywords

Navigation