Skip to main content
Log in

Free N-linked oligosaccharide chains: Formation and degradation

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

There is growing evidence that N-linked glycans play pivotal roles in protein folding and intra- and/or intercellular trafficking of N-glycosylated proteins. It has been shown that during the N-glycosylation of proteins, significant amounts of free oligosaccharides (free OSs) are generated in the lumen of the endoplasmic reticulum (ER) by a mechanism which remains to be clarified. Free OSs are also formed in the cytosol by enzymatic deglycosylation of misfolded glycoproteins, which are subjected to destruction by a cellular system called “ER-associated degradation (ERAD).” While the precise functions of free OSs remain obscure, biochemical studies have revealed that a novel cellular process enables them to be catabolized in a specialized manner, that involves pumping free OSs in the lumen of the ER into the cytosol where further processing occurs. This process is followed by entry into the lysosomes. In this review we summarize current knowledge about the formation, processing and degradation of free OSs in eukaryotes and also discuss the potential biological significance of this pathway. Other evidence for the occurrence of free OSs in various cellular processes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dol:

dolichol

EDEM:

ER degradation enhancing α-mannosidase-like protein

ENGase:

endo-β-N-acetylglucosaminidase

EST:

Expression sequence tag

Gn1:

oligosaccharide with single GlcNAc at its reducing terminus

Gn2:

oligosaccharide with N,N′-diacetylchitobiose at its reducing terminus

ER:

endoplasmic reticulum

ERAD:

ER-associated degradation

OS:

oligosaccharide

OST:

oligosaccharyltransferase

PNGase:

peptide:N-glycanase

UNG:

unconjugated N-glycan

MDBK:

Mardin-Darby bovine kidney

CHO:

Chinese Hamster Ovary

UGGT:

UDP-glucose:glycoprotein glucosyltransferase

References

  1. Trombetta, E.S., Parodi, A.J.: Quality control and protein folding in the secretory pathway. Annu. Rev. Cell. Dev. Biol. 19, 649–76 (2003)

    Article  PubMed  CAS  Google Scholar 

  2. Yoshida. Y.: A novel role for N-glycans in the ERAD system. J. Biochem. (Tokyo) 134, 183–90 (2003)

    CAS  Google Scholar 

  3. Spiro, R.G.: Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol. Life Sci. 61, 1025–41 (2004)

    Article  PubMed  CAS  Google Scholar 

  4. Helenius, A., Aebi, M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–49 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. Cacan, R., Hoflack, B., Verbert, A.: Fate of oligosaccharide-lipid intermediates synthesized by resting rat-spleen lymphocytes. Eur J Biochem. 106, 473–9 (1980)

    Article  PubMed  CAS  Google Scholar 

  6. Hanover, J.A., Lennarz, W.J.: Transmembrane assembly of membrane and secretory glycoproteins. Arch. Biochem. Biophys. 211, 1–19 (1981)

    Article  PubMed  CAS  Google Scholar 

  7. Anumula, K.R., Spiro, R.G.: Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices. J. Biol. Chem. 258, 15274–82 (1983)

    PubMed  CAS  Google Scholar 

  8. Suzuki, T., Seko, A., Kitajima, K., Inoue, Y., Inoue, S.: Identification of peptide: N-glycanase activity in mammalian-derived cultured cells. Biochem. Biophys. Res. Commun. 194, 1124–30 (1993)

    Article  PubMed  CAS  Google Scholar 

  9. Hirsch, C., Jarosch, E., Sommer, T., Wolf, D.H.: Endoplasmic reticulum-associated protein degradation–one model fits all? Biochim. Biophys. Acta. 1695, 215–23 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Schmitz, A., Herzog, V.: Endoplasmic reticulum-associated degradation: Exceptions to the rule. Eur. J. Cell Biol. 83, 501–9 (2004)

    Article  PubMed  Google Scholar 

  11. Ahner, A., Brodsky, J.L.: Checkpoints in ER-associated degradation: Excuse me, which way to the proteasome? Trends Cell Biol. 14, 474–8 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Spiro, M.J., Spiro, R.G.: Potential regulation of N-glycosylation precursor through oligosaccharide-lipid hydrolase action and glucosyltransferase-glucosidase shuttle. J. Biol. Chem. 266, 5311–7 (1991)

    PubMed  CAS  Google Scholar 

  13. Villers, C., Cacan, R., Mir, A.-M., Labiau, O., Verbert, A.: Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins. Biochem. J. 298, 135–42 (1994)

    PubMed  CAS  Google Scholar 

  14. Chantret, I., Frenoy, J.P., Moore, S.E.H.: Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: Roles for peptide:N-glycanase (Png1p) and vacuolar mannosidase (Ams1p). Biochem. J. 373, 901–8 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Duvet, S., Foulquier, F., Mir, A.-M., Chirat, F., Cacan, R.: Discrimination between lumenal and cytosolic sites of deglycosylation in endoplasmic reticulum-associated degradation of glycoproteins by using benzyl mannose in CHO cell lines. Glycobiology 14, 841–9 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. Moore, S.E.H., Bauvy, C., Codogno, P.: Endoplasmic reticulum-to-cytosol transport of free polymannose oligosaccharides in permeabilized HepG2 cells. EMBO J. 14, 6034–42 (1995)

    PubMed  CAS  Google Scholar 

  17. Karaivanova, V.K., Spiro, R.G.: Effect of proteasome inhibitors on the release into the cytosol of free polymannose oligosaccharides from glycoproteins. Glycobiology 10, 727–35 (2000)

    Article  PubMed  CAS  Google Scholar 

  18. Spiro, M.J., Spiro, R.G.: Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation. Glycobiology 11, 803–11 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. Weng, S., Spiro, R.G.: Demonstration of a peptide:N-glycosidase in the endoplasmic reticulum of rat liver. Biochem. J. 322, 655–61 (1997)

    PubMed  CAS  Google Scholar 

  20. Suzuki, T., Park, H., Hollingsworth, N.M., Sternglanz, R., Lennarz, W.J.: PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J. Cell Biol. 149, 1039–52 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki, T., Lennarz, W.J.: Glycopeptide export from the endoplasmic reticulum into cytosol is mediated by a mechanism distinct from that for export of misfolded glycoprotein. Glycobiology 12, 803–11 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. Park, H., Suzuki, T., Lennarz, W.J.: Identification of proteins that interact with mammalian peptide:N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc. Natl. Acad. Sci. USA 98, 11163–8 (2001)

    Article  PubMed  CAS  Google Scholar 

  23. Katiyar, S., Li, G., Lennarz, W.J.: A complex between peptide:N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA 101, 13774–9 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. Katiyar, S., Joshi, S., Lennarz, W.J.: The Retrotranslocation Protein Derlin-1 Binds Peptide:N-Glycanase to the Endoplasmic Reticulum. Mol. Biol. Cell. 16, 4584–94 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Gao, N., Shang, J., Lehrman, M.A.: Analysis of glycosylation in CDG-Ia fibroblasts by fluorophore-assisted carbohydrate electrophoresis: Implications for extracellular glucose and intracellular mannose 6-phosphate. J. Biol. Chem. 280, 17901–9 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Cabral, C.M., Liu, Y., Sifers, R.N.: Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem. Sci. 26, 619–24 (2001)

    Article  PubMed  CAS  Google Scholar 

  27. Moore, S.E.H.: Transport of free polymannose-type oligosaccharides from the endoplasmic reticulum into the cytosol is inhibited by mannosides and requires a thapsigargin-sensitive calcium store. Glycobiology 8, 373–81 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. Moore, S.H.E., Spiro, R.G.: Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J. Biol. Chem. 269, 12715–21 (1994)

    PubMed  CAS  Google Scholar 

  29. Durrant, C., Moore, S.E.H.: Perturbation of free oligosaccharide trafficking in endoplasmic reticulum glucosidase I-deficient and castanospermine-treated cells. Biochem. J. 365, 239–47 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. Gillece, P., Pilon, M., Römisch, K.: The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 97, 4609–14 (2000)

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki, T., Lennarz, W.J.: In yeast the export of small glycopeptides from the endoplasmic reticulum into the cytosol is not affected by the structure of their oligosaccharide chains. Glycobiology 10, 51–8 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. Ali, B.R.S., Field, M.C.: Glycopeptide export from mammalian microsomes is independent of calcium and is distinct from oligosaccharide export. Glycobiology 10, 383–91 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. Cacan, R., Duvet, S., Labiau, O., Verbert, A., Krag, S.S.: Monoglucosylated oligomannosides are released during the degradation process of newly synthesized glycoproteins. J. Biol. Chem. 276, 22307–12 (2001)

    Article  PubMed  CAS  Google Scholar 

  34. Mellor, H.R., Neville, D.C.A., Harvey, D.J., Platt, F.M., Dwek, R.A.: Butters, T.D.: Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides. Biochem. J. 381, 867–75 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. Moore, S.H.E., Spiro, R.G.: Demonstration that Golgi endo-Α-D-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins. J. Biol. Chem. 265, 13104–12 (1990)

    PubMed  CAS  Google Scholar 

  36. Spiro, M.J., Bhoyroo, V.D., Spiro, R.G.: Molecular cloning and expression of rat liver endo-Α-mannosidase, an N-linked oligosaccharide processing enzyme. J. Biol. Chem. 272, 29356–63 (1997)

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki, T., Park, H., Lennarz, W.J.: Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: Occurrence, primary structure, and potential functions. FASEB J. 16, 635–41 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. Hirsch, C., Blom, D., Ploegh, H.L.: A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 22, 1036–46 (2003)

    Article  PubMed  CAS  Google Scholar 

  39. Blom, D., Hirsch, C., Stern, P., Tortorella, D., Ploegh, H.L.: A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J. 23, 650–8 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki, T., Seko, A., Kitajima, K., Inoue, Y., Inoue, S.: Purification and enzymatic properties of peptide:N-glycanase from C3H mouse-derived L-929 fibroblast cells. Possible widespread occurrence of post-translational remodification of proteins by N-deglycosylation. J. Biol. Chem. 269, 17611–8 (1994)

    PubMed  CAS  Google Scholar 

  41. Suzuki, T., Kitajima, K., Emori, Y., Inoue, Y., Inoue, S.: Site-specific de-N-glycosylation of diglycosylated ovalbumin in hen oviduct by endogenous peptide: N-glycanase as a quality control system for newly synthesized proteins, Proc. Natl. Acad. Sci. USA. 94, 6244–9 (1997)

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki, T., Park, H., Kitajima, K., Lennarz, W.J.: Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity. J. Biol. Chem. 273, 21526–30 (1998)

    Article  PubMed  CAS  Google Scholar 

  43. Seko, A., Kitajima, K., Iwamatsu, T., Inoue, Y., Inoue, S.: Identification of two discrete peptide: N-glycanases in Oryzias latipes during embryogenesis. Glycobiology 9, 887–95 (1999)

    Article  PubMed  CAS  Google Scholar 

  44. Suzuki, T., Kwofie, M.A., Lennarz, W.J.: Ngly1, a mouse gene encoding a deglycosylating enzyme implicated in proteasomal degradation: Expression, genomic organization, and chromosomal mapping. Biochem Biophys Res Commun. 304, 326–32 (2003)

    Article  PubMed  CAS  Google Scholar 

  45. Kmiécik, D., Herman, V., Stroop, C.J., Michalski, J.C., Mir, A.-M., Labiau, O., Verbert, A., Cacan, R.: Catabolism of glycan moieties of lipid intermediates leads to a single Man5GlcNAc oligosaccharide isomer: a study with permeabilized CHO cells. Glycobiology 5, 483–94 (1995)

    PubMed  Google Scholar 

  46. Bélard, M., Cacan, R., Verbert, A.: Characterization of an oligosaccharide-pyrophosphodolichol pyrophosphatase activity in yeast. Biochem J. 255, 235–42 (1988)

    PubMed  Google Scholar 

  47. Berger, S., Menudier, A., Julien, R., Karamanos, Y.: Do de-N-glycosylation enzymes have an important role in plant cells? Biochimie. 77, 751–60 (1995)

    Article  PubMed  CAS  Google Scholar 

  48. Iwai, K., Mega, T., Hase, S.: Detection of Man5GlcNAc and related free oligomannosides in the cytosol fraction of hen oviduct. J. Biochem. (Tokyo). 125, 70–4 (1999)

    CAS  Google Scholar 

  49. Ohashi, S., Iwai, K., Mega, T., Hase, S.: Quantitation and isomeric structure analysis of free oligosaccharides present in the cytosol fraction of mouse liver: detection of a free disialobiantennary oligosaccharide and glucosylated oligomannosides. J. Biochem. (Tokyo). 126, 852–8 (1999)

    CAS  Google Scholar 

  50. Suzuki, T., Yano, K., Sugimoto, S., Kitajima, K.: Lennarz, W.J., Inoue, S., Inoue, Y., Emori, Y.: Endo-β-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol. Proc. Natl. Acad. Sci. USA. 99, 9691–6 (2002)

    Article  PubMed  CAS  Google Scholar 

  51. Kato, T., Fujita, K., Takeuchi, M., Kobayashi, K.: Natsuka, S., Ikura, K., Kumagai, H., Yamamoto, K.: Identification of an endo-β-N-acetylglucosaminidase gene in Caenorhabditis elegans and its expression in Escherichia coli. Glycobiology 12, 581–7 (2002)

    Article  PubMed  CAS  Google Scholar 

  52. Cacan, R., Dengremont, C., Labiau, O., Kmiécik, D., Mir, A.-M., Verbert, A.: Occurrence of a cytosolic neutral chitobiase activity involved in oligomannoside degradation: a study with Madin-Darby bovine kidney (MDBK) cells. Biochem. J. 313, 597–602 (1996)

    PubMed  CAS  Google Scholar 

  53. Nishigaki, M., Muramatsu, T., Kobata, A.: Endoglycosidases acting on carbohydrate moieties of glycoproteins: demonstration in mammalian tissue. Biochem. Biophys. Res. Commun. 59, 638–45 (1974)

    Article  PubMed  CAS  Google Scholar 

  54. Pierce, R.J., Spik, G., Montreuil, J.: Cytosolic location of an endo-N-acetyl-β-D-glucosaminidase activity in rat liver and kidney. Biochem. J. 180, 673–76 (1979)

    PubMed  CAS  Google Scholar 

  55. Pierce, R.J., Spik, G., Montreuil, J.: Demonstration and cytosolic location of an endo-N-acetyl-β-D-glucosaminidase activity towards an asialo-N-acetl-lactosaminic-type substrate in rat liver. Biochem. J. 185, 261–4 (1980)

    PubMed  CAS  Google Scholar 

  56. Lisman, J.J.W., van der Wal, C.J., Overdijk, B.: Endo-N-acetyl-β-D-glucosaminidase activity in rat liver. Studies on substrate specificity, enzyme inhibition, subcellular localization and partial purification. Biochem. J. 229, 379–85 (1985)

    PubMed  CAS  Google Scholar 

  57. Kato, T., Hatanaka, K., Mega, T., Hase, S.: Purification and characterization of endo-β-N-acetylglucosaminidase from hen oviduct. J. Biochem. (Tokyo). 122, 1167–73 (1997)

    CAS  Google Scholar 

  58. Fisher, K.J., Aronson, N.N., Jr.: Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N-acetylchitobiase. J. Biol. Chem. 267, 19607–16 (1992)

    PubMed  CAS  Google Scholar 

  59. Song, Z.W., Li, S.-C., Li, Y.-T.: Absence of endo-β-N-acetylglucosaminidase activity in the kidneys of sheep, cattle and pig. Biochem. J. 248, 145–9 (1987)

    PubMed  CAS  Google Scholar 

  60. Shoup, V.A., Touster, O.: Purification and characterization of the Α-D-mannosidase of rat liver cytosol. J. Biol. Chem. 251, 3845–52 (1976)

    PubMed  CAS  Google Scholar 

  61. Bischoff, J., Kornfeld, R.: The soluble form of rat liver Α-mannosidase is immunologically related to the endoplasmic reticulum membrane alpha-mannosidase. J. Biol. Chem. 261, 4758–65 (1986)

    PubMed  CAS  Google Scholar 

  62. Tulsiani, D.R.P., Touster, O.: Substrate specificities of rat kidney lysosomal and cytosolic Α-D-mannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism. J. Biol. Chem. 262, 6506–14 (1987)

    PubMed  CAS  Google Scholar 

  63. Oku, H., Hase, S.: Studies on the substrate specificity of neutral Α-mannosidase purified from Japanese quail oviduct by using sugar chains from glycoproteins. J. Biochem. (Tokyo). 110, 982–9 (1991)

    CAS  Google Scholar 

  64. Haeuw, J.F., Strecker, G., Wieruszeski, J.M., Montreuil, J., Michalski, J.C.: Substrate specificity of rat liver cytosolic Α-D-mannosidase. Novel degradative pathway for oligomannosidic type glycans. Eur. J. Biochem. 202, 1257–68 (1991)

    Article  PubMed  CAS  Google Scholar 

  65. al Daher, S., De Gasperi, R., Daniel, P., Hirani, S., Warren, C., Winchester, B.: Substrate specificity of human liver neutral Α-mannosidase. Biochem. J. 286, 47–53 (1992)

    PubMed  Google Scholar 

  66. De Gasperi, R., al Daher, S., Winchester, B.G., Warren, C.D.: Substrate specificity of the bovine and feline neutral Α-mannosidases. Biochem. J. 286, 55–63 (1992)

    PubMed  Google Scholar 

  67. Grard, T., Saint-Pol, A., Haeuw, J.F., Alonso, C., Wieruszeski, J.M., Strecker, G., Michalski, J.C.: Soluble forms of Α-D-mannosidases from rat liver. Separation and characterization of two enzymic forms with different substrate specificities. Eur. J. Biochem. 223, 99–106 (1994)

    Article  PubMed  CAS  Google Scholar 

  68. Grard, T., Herman, V., Saint-Pol, A., Kmiecik, D., Labiau, O., Mir, A.-M., Alonso, C., Verbert, A., Cacan, R., Michalski, J.C.: Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic Α-D-mannosidase. Biochem. J. 316, 787–92 (1996)

    PubMed  CAS  Google Scholar 

  69. Kumano, M., Omichi, K., Hase, S.: Substrate specificity of bovine liver cytosolic neutral Α-mannosidase activated by Co2+. J. Biochem. (Tokyo). 119, 991–7 (1996)

    CAS  Google Scholar 

  70. Yamashiro, K., Itoh, H., Yamagishi, M., Natsuka, S., Mega, T., Hase, S.: Purification and characterization of neutral Α-mannosidase from hen oviduct: studies on the activation mechanism of Co2+. J. Biochem. (Tokyo). 122, 1174–81 (1997)

    CAS  Google Scholar 

  71. Mathur, R., Panneerselvam, K., Balasubramanian, A.S.: Co2+-mediated time- and temperature-dependent activation of neutral Α-D-mannosidase from monkey brain. Biochem. J. 253, 677–85 (1988)

    PubMed  CAS  Google Scholar 

  72. Yamagishi, M., Ishimizu, T., Natsuka, S., Hase, S.: Co(II)-regulated substrate specificity of cytosolic Α-mannosidase. J. Biochem. (Tokyo). 132, 253–6 (2002)

    CAS  Google Scholar 

  73. Bischoff, J., Moremen, K., Lodish, H.F.: Isolation, characterization, and expression of cDNA encoding a rat liver endoplasmic reticulum Α-mannosidase. J. Biol. Chem. 265, 17110–7 (1990)

    PubMed  CAS  Google Scholar 

  74. Weng, S., Spiro, R.G.: Demonstration that a kifunensine-resistant Α-mannosidase with a unique processing action on N-linked oligosaccharides occurs in rat liver endoplasmic reticulum and various cultured cells. J. Biol. Chem. 268, 25656–63 (1993)

    PubMed  CAS  Google Scholar 

  75. Weng, S., Spiro, R.G.: Endoplasmic reticulum kifunensine-resistant Α-mannosidase is enzymatically and immunologically related to the cytosolic Α-mannosidase. Arch. Biochem. Biophys. 325, 113–23 (1996)

    Article  PubMed  CAS  Google Scholar 

  76. Saint-Pol, A., Bauvy, C., Codogno, P., Moore, S.E.H.: Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells. J. Cell. Biol. 136, 45–59 (1997)

    Article  PubMed  CAS  Google Scholar 

  77. Saint-Pol, A., Codogno, P., Moore, S.E.H.: Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes. J. Biol. Chem. 274, 13547–55 (1999)

    Article  PubMed  CAS  Google Scholar 

  78. Yoshihisa, T., Anraku, Y.: A novel pathway of import of Α-mannosidase, a marker enzyme of vacuolar membrane, in Saccharomyces cerevisiae. J. Biol. Chem. 265, 22418–25 (1990)

    PubMed  CAS  Google Scholar 

  79. Hutchins, M.U., Klionsky, D.J.: Vacuolar localization of oligomeric Α-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J. Biol. Chem. 276, 20491–8 (2001)

    Article  PubMed  CAS  Google Scholar 

  80. Priem, B., Morvan, H., Gross, K.C.: Unconjugated N-glycans as a new class of plant oligosaccharins. Biochem. Soc. Trans. 22, 398–402 (1994)

    PubMed  CAS  Google Scholar 

  81. Morvan, H., Lhernould, S.: Unconjugated-N-glycans probing or signalling in plant tissues. Plant Physiol. Biochem. 34, 335–41 (1996)

    CAS  Google Scholar 

  82. Priem, B., Solo Kwan, J., Wieruszeski, J.M., Strecker, G., Nazih, H., Morvan, H.: Isolation and characterization of free glycans of the oligomannose type from the extracellular medium of a plant cell suspension. Glycoconjugate J. 7, 121–32 (1990)

    Article  CAS  Google Scholar 

  83. Priem, B., Morvan, H., Hafez, A.M.A., Morvan, C.: Influence d’un xylmannoside d’origine végétale sur l’élongation de l’hypocotyle de Lin. C. R. Acad Sci Paris. 311, 411–6 (1990)

    CAS  Google Scholar 

  84. Lhernould, S., Karamanos, Y., Bourgerie, S., Strecker, G., Julien, R., Morvan, H.: Peptide-N4-(N-acetylglucosaminyl)asparagine amidase (PNGase) activity could explain the occurrence of extracellular xylomannosides in a plant cell suspension. Glycoconjugate J. 9, 191–7 (1992)

    Article  CAS  Google Scholar 

  85. Priem, B., Gitti, R., Bush, C.A., Gross, K.C.: Structure of ten free N-glycans in ripening tomato fruit. Arabinose is a constituent of a plant N-glycan. Plant. Physiol. 102, 445–58 (1993)

    Article  PubMed  CAS  Google Scholar 

  86. Yunovitz, H., Gross, K.C.: Delay of tomato fruit ripening by an oligosaccharide N-glycan. Interactions with IAA, galactose and lectins. Physiol. Plant. 90, 152–6 (1994)

    Article  CAS  Google Scholar 

  87. Yunovitz, H., Livsey, J.N., Gross, K.C.: Unconjugated Man5GlcNAc occurs in vegetative tissues of tomato. Phytochemistry 42, 607–10 (1996)

    Article  PubMed  CAS  Google Scholar 

  88. Faugeron, C., Lhernould, S., Maes, E., Lerouge, P., Strecker, G., Morvan, H.: Tomato plant leaves also contain unconjugated N-glycans. Plant. Physiol. Biochem. 35, 73–9 (1997)

    CAS  Google Scholar 

  89. Faugeron, C., Lhernould, S., Lemoine, J., Costa, G., Morvan, C.: Identification of unconjugated N-glycans in strawberry plants. Plant Physiol. Biochem. 35, 891–95 (1997)

    CAS  Google Scholar 

  90. Kimura, Y., Takagi, S., Shiraishi, T.: Occurrence of free N-glycans in pea (Pisum sativum. L) seedlings. Biosci. Biotechnol. Biochem. 61, 924–26 (1997)

    CAS  Google Scholar 

  91. Kimura, Y., Matsuo, S.: Free N-glycans already occur at an early stage of seed development. J. Biochem. (Tokyo). 127, 1013–9 (2000)

    CAS  Google Scholar 

  92. Kimura, Y., Kitahara, E.: Structural analysis of free N-glycans occurring in soybean seedlings and dry seeds. Biosci. Biotechnol. Biochem. 64, 1847–55 (2000)

    Article  PubMed  CAS  Google Scholar 

  93. Kimura, Y., Matsuo, S., Tsurusaki, S., Kimura, M., Hara-Nishimura, I., Nishimura, M.: Subcellular localization of endo-β-N-acetylglucosaminidase and high-mannose type free N-glycans in plant cell. Biochim. Biophys. Acta. 1570, 38–46 (2002)

    PubMed  CAS  Google Scholar 

  94. Priem, B., Gross, K.C.: Mannosyl- and xylosyl containing glycans promote tomato (Lycopersicon esculentum, Mill.) fruit ripening. Plant. Physiol. 98, 399–401 (1992)

    PubMed  CAS  Google Scholar 

  95. Lhernould, S., Karamanos, Y., Priem, B., Morvan, H.: Carbon starvation increases endoglycosidase activities and production of ‘unconjugated N-glycans’ in Silene alba cell-suspension cultures. Plant. Physiol. 106, 779–84 (1994)

    Article  PubMed  CAS  Google Scholar 

  96. Takahashi, N.: Demonstration of a new amidase acting on glycopeptides. Biochem. Biophys. Res. Commun. 76, 1194–201 (1977)

    Article  PubMed  CAS  Google Scholar 

  97. Takahashi, N., Nishibe, H.: Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages. J. Biochem. (Tokyo). 84, 1467–73 (1978)

    CAS  Google Scholar 

  98. Takahashi, N., Nishibe, H.: Almond glycopeptidase acting on asparaglycosylamine linkages. Multiplicity and substrate specificity. Biochim. Biophys. Acta 657, 457–67 (1981)

    PubMed  CAS  Google Scholar 

  99. Taga, E.M., Waheed, A., Van Etten, R.L.: Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond. Biochemistry 23, 815–22 (1984)

    Article  PubMed  CAS  Google Scholar 

  100. Altmann, F., Paschinger, K., Dalik, T., Vorauer, K.: Characterisation of peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase A and its N-glycans. Eur. J. Biochem. 252, 118–23 (1998)

    Article  PubMed  CAS  Google Scholar 

  101. Sugiyama, K., Ishihara, H., Tejima, S., Takahashi, N.: Demonstration of a new glycopeptidase, from jack-bean meal, acting on aspartylglucosylamine linkages. Biochem. Biophys. Res. Commun. 112, 155–60 (1983)

    Article  PubMed  CAS  Google Scholar 

  102. Plummer, T.H., Jr., Phelan, A.W., Tarentino, A.L.: Detection and quantification of peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidases. Eur. J. Biochem. 163, 167–73 (1987)

    Article  PubMed  CAS  Google Scholar 

  103. Yet, M.G., Wold, F.: Purification and characterization of two glycopeptide hydrolases from jack beans. J. Biol. Chem. 263, 118–22 (1988)

    PubMed  CAS  Google Scholar 

  104. Lhernould, S., Karamanos, Y., Lerouge, P., Morvan, H.: Characterization of the peptide-N4-(N-acetylglucosaminyl) asparagine amidase (PNGase Se) from Silene alba cells. Glycoconjugate J. 12, 94–8 (1995)

    Article  CAS  Google Scholar 

  105. Berger, S., Menudier, A., Julien, R., Karamanos, Y.: Endo-N-acetyl-β-D-glucosaminidase and peptide-N 4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry 39, 481–7 (1995)

    Article  PubMed  CAS  Google Scholar 

  106. Kimura, Y., Ohno, A.: A new peptide-N 4-(acetyl-β-glucosaminyl)asparagine amidase from soybean (Glycine max) seeds: purification and substrate specificity. Biosci. Biotechnol. Biochem. 62, 412–8 (1998)

    Article  PubMed  CAS  Google Scholar 

  107. Chang, T., Kuo, M.C., Khoo, K.H., Inoue, S., Inoue, Y.: Developmentally regulated expression of a peptide:N-glycanase during germination of rice seeds (Oryza sativa) and its purification and characterization. J. Biol. Chem. 275, 129–34 (2000)

    Article  PubMed  CAS  Google Scholar 

  108. Ogata-Arakawa, M., Muramatsu, T., Kobata, A.: Partial purification and characterization of an engo-β-N-acetylglucosaminidase from fig extract. J. Biochem. (Tokyo). 82, 611–4 (1977)

    CAS  Google Scholar 

  109. Chien, S., Weinburg, R., Li, S., Li, Y.: Endo-β-N-acetylglucosaminidase from fig latex. Biochem. Biophys. Res. Commun. 76, 317–23 (1976)

    Article  PubMed  CAS  Google Scholar 

  110. Li, S.-C., Asakawa, M., Hirabayashi, Y., Li, Y.: Isolation of two endo-β-N-acetylglucosaminidases from fig latex. Biochim. Biophys. Acta 660, 278–83 (1981)

    PubMed  CAS  Google Scholar 

  111. Nishiyama, A., Nishimoto, T., Yamaguchi, H., A novel endo N-acetyl-β-D-glucosaminidase from the shoots of Phyllostachys heterocycla var pubescens. Agric. Biol. Chem. 55, 1155–8 (1991)

    CAS  Google Scholar 

  112. Kimura, Y., Iwata, K., Sumi, Y., Takagi, S.: Purification and substrate specificity of an endo-β-N-acetylglucosaminidase from pea (Pisum sativum) seeds. Biosci. Biotechnol. Biochem. 60, 228–32 (1996)

    Article  PubMed  CAS  Google Scholar 

  113. Kimura, Y., Matsuo, S., Takagi, S.: Enzymatic properties of a Ginkgo biloba endo-β-N-acetylglucosaminidase and N-glycan structures of storage glycoproteins in the seeds. Biosci. Biotechnol. Biochem. 62, 253–61 (1998)

    Article  PubMed  CAS  Google Scholar 

  114. Kimura, Y., Tokuda, T., Ohno, A., Tanaka, H., Ishiguro, Y.: Enzymatic properties of endo-β-N-acetylglucosaminidases from developing tomato fruits and soybean seeds: substrate specificity of plant origin endoglycosidase. Biochim. Biophys. Acta. 1381, 27–36 (1998)

    PubMed  CAS  Google Scholar 

  115. Woo, K.K., Miyazaki, M., Hara, S., Kimura, M., Kimura, Y.: Purification and characterization of a co(II)-sensitive Α-mannosidase from Ginkgo biloba seeds. Biosci. Biotechnol. Biochem. 68, 2547–56 (2004)

    Article  PubMed  CAS  Google Scholar 

  116. Suzuki, T., Park, H., Till, E.A., Lennarz, W.J.: The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway. Biochem. Biophys. Res. Commun. 287, 1083–7 (2001)

    Article  PubMed  CAS  Google Scholar 

  117. Di Cola, A., Frigerio, L., Lord, J.M., Ceriotti, A., Roberts, L.M.: Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proc. Natl. Acad. Sci. USA. 98, 14726–31 (2001)

    Article  PubMed  Google Scholar 

  118. Della Mea, M., Caparrós-Ruiz, D., Claparols, I., Serafini-Fracassini, D., Rigau, J.: AtPng1p. The First Plant Transglutaminase. Plant. Physiol. 135, 2045–54 (2004)

    Article  Google Scholar 

  119. Makarova, K.S., Aravind, L., Koonin, E.V.: A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein. Sci. 8, 1714–9 (1999)

    Article  PubMed  CAS  Google Scholar 

  120. Ishii, K., Iwasaki, M., Inoue, S., Kenny, P.T., Komura, H., Inoue, Y.: Free sialooligosaccharides found in the unfertilized eggs of a freshwater trout, Plecoglossus altivelis. A large storage pool of complex-type bi-, tri-, and tetraantennary sialooligosaccharides. J. Biol. Chem. 264, 1623–30 (1989)

    PubMed  CAS  Google Scholar 

  121. Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K., Inoue, Y.: Isolation and structures of glycoprotein-derived free sialooligosaccharides from the unfertilized eggs of Tribolodon hakonensis, a dace. Intracellular accumulation of a novel class of biantennary disialooligosaccharides. J. Biol. Chem. 264, 18520–6 (1989)

    PubMed  CAS  Google Scholar 

  122. Seko, A., Kitajima, K., Iwasaki, M., Inoue, S., Inoue, Y.: Structural studies of fertilization-associated carbohydrate-rich glycoproteins (hyosophorin) isolated from the fertilized and unfertilized eggs of flounder, Paralichthys olivaceus. Presence of a novel penta-antennary N-linked glycan chain in the tandem repeating glycopeptide unit of hyosophorin. J. Biol. Chem. 264, 15922–9 (1989)

    PubMed  CAS  Google Scholar 

  123. Inoue, S.: De-N-Glycosylation of Glycoproteins in Animal Cells: Evidence for Occurrence and Significance. Trends Glycosci. Glycotechnol. 2, 225–34 (1990)

    CAS  Google Scholar 

  124. Seko, A., Kitajima, K., Inoue, S., Inoue, Y.: Identification of free glycan chain liberated by de-N-glycosylation of the cortical alveolar glycopolyprotein (hyosophorin) during early embryogenesis of the Medaka fish, Oryzias latipes. Biochem. Biophys. Res. Commun. 180, 1165–71 (1991)

    Article  PubMed  CAS  Google Scholar 

  125. Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y., Inoue, S.: Fish egg glycophosphoproteins have species-specific N-linked glycan units previously found in a storage pool of free glycan chains. J. Biol. Chem. 267, 24287–96 (1992)

    PubMed  CAS  Google Scholar 

  126. Plancke, Y., Delplace, F., Wieruszeski, J.M., Maes, E., Strecker, G.: Isolation and structures of glycoprotein-derived free oligosaccharides from the unfertilized eggs of Scyliorhinus caniculus. Characterization of the sequences galactose(Α 1–4)galactose(β 1–3)-N-acetylglucosamine and N-acetylneuraminic acid(Α 2–6)galactose(β 1–3)-N-acetylglucosamine. Eur. J. Biochem. 235, 199–206 (1996)

    Article  PubMed  CAS  Google Scholar 

  127. Inoue, S., Inoue, Y.: Fish glycoproteins. In Glycoproteins II, eddited by Montreuil J, Vliegenthart JFG, Schachter H (Elsevier Science B. V., 1997), pp. 147–61

    Google Scholar 

  128. Kitajima, K., Inoue, S., Inoue, Y.: Isolation and characterization of a novel type of sialoglycoproteins (hyosophorin) from the eggs of medaka, Oryzias latipes: nonapeptide with a large N-linked glycan chain as a tandem repeat unit. Dev Biol. 132, 544–53 (1989)

    Article  PubMed  CAS  Google Scholar 

  129. Seko, A., Kitajima, K., Inoue, Y., Inoue, S.: Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish). The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living organisms. J. Biol. Chem. 266, 22110–4 (1991)

    PubMed  CAS  Google Scholar 

  130. Kitajima, K., Suzuki, T., Kouchi, Z., Inoue, S., Inoue, Y.: Identification and distribution of peptide:N-glycanase (PNGase) in mouse organs. Arch. Biochem. Biophys. 319, 393–401 (1995)

    Article  PubMed  CAS  Google Scholar 

  131. Seko, A., Koketsu, M., Nishizono, M., Enoki, Y., Ibrahim, H.R., Juneja, L.R., Kim, M., Yamamoto, T.: Occurence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk. Biochim Biophys Acta 1335, 23–32 (1997)

    PubMed  CAS  Google Scholar 

  132. Suzuki, T., Yan, Q., Lennarz, W.J.: Complex, two-way traffic of molecules across the membrane of the endoplasmic reticulum. J. Biol. Chem. 273, 10083–6 (1998)

    Article  PubMed  CAS  Google Scholar 

  133. Moore, S.E.H.: Oligosaccharide transport: pumping waste from the ER into lysosomes. Trends Cell Biol. 9, 441–6 (1999)

    Article  PubMed  CAS  Google Scholar 

  134. Cacan, R., Verbert, A.: Transport of free and N-linked oligomannoside species across the rough endoplasmic reticulum membranes. Glycobiology 10, 645–8 (2000)

    Article  PubMed  CAS  Google Scholar 

  135. Haeuw, J.F., Michalski, J.C., Strecker, G., Spik, G., Montreuil, J.: Cytosolic glycosidases: do they exist? Glycobiology 1, 487–92 (1991)

    PubMed  CAS  Google Scholar 

  136. Suzuki, T., Kitajima, K., Inoue, S., Inoue, Y.: Occurrence and biological roles of ‘proximal glycanases’ in animal cells. Glycobiology 4, 777–89 (1994)

    PubMed  CAS  Google Scholar 

  137. Suzuki, T., Kitajima, K., Inoue, S., Inoue, Y.: N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Glycoconjugate J. 12, 183–93 (1995)

    Article  CAS  Google Scholar 

  138. Cacan, R., Duvet, S., Kmiecik, D., Labiau, O., Mir, A.-M., Verbert, A.: ‘Glyco-deglyco’ processes during the synthesis of N-glycoproteins. Biochimie 80, 59–68 (1998)

    Article  PubMed  CAS  Google Scholar 

  139. Cacan, R., Verbert, A.: Free and N-linked oligomannosides as markers of the quality control of newly synthesized glycoproteins. Biochem. Biophys. Res. Commun. 258, 1–5 (1999)

    Article  PubMed  CAS  Google Scholar 

  140. Suzuki, T.: Oligosaccharide Chains: Free, N-Linked, O-Linked. Encycl. Biol. Chem. 3, 161–4 (2004)

    Article  CAS  Google Scholar 

  141. Fagioli, C., Sitia, R.: Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J. Biol. Chem. 276, 12885–92 (2001)

    Article  PubMed  CAS  Google Scholar 

  142. Caldwell, S.R., Hill, K.J., Cooper, A.A.: Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J. Biol. Chem. 276, 23296–303 (2001)

    Article  PubMed  CAS  Google Scholar 

  143. Vashist, S., Kim, W., Belden, W.J., Spear, E.D., Barlowe, C., Ng, D.T.: Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355–68 (2001)

    Article  PubMed  CAS  Google Scholar 

  144. Hosokawa, N., Tremblay, L.O., You, Z., Herscovics, A., Wada, I., Nagata, K.: Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong Α1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278, 26287–94 (2003)

    Article  PubMed  CAS  Google Scholar 

  145. Kitzmüller, C., Caprini, A., Moore, S.E.H., Frénoy, J.P., Schwaiger, E., Kellermann, O., Ivessa, N.E., Ermonval, M.: Processing of N-linked glycans during endoplasmic-reticulum-associated degradation of a short-lived variant of ribophorin I. Biochem. J. 376, 687–96 (2003)

    Article  PubMed  CAS  Google Scholar 

  146. Hartley, M.R., Lord, J.M.: Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta 1701, 1–14 (2004)

    PubMed  CAS  Google Scholar 

  147. Rapak, A., Falnes, P.O., Olsnes, S.: Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc. Natl. Acad. Sci. USA. 94, 3783–8 (1997)

    Article  PubMed  CAS  Google Scholar 

  148. Winchester, B.: Lysosomal metabolism of glycoproteins. Glycobiology 15, 1R–15R (2005)

    Article  PubMed  CAS  Google Scholar 

  149. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L.O., Herscovics, A., Nagata, K.: A novel ER Α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2, 415–22 (2001)

    PubMed  CAS  Google Scholar 

  150. Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K., Endo, T.: Mnl1p, an Α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem. 276, 8635–8 (2001)

    Article  PubMed  CAS  Google Scholar 

  151. Jakob, C.A., Bodmer, D., Spirig, U., Battig, P., Marcil, A., Dignard, D., Bergeron, J.J., Thomas, D.Y., Aebi, M.: Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2, 423–30 (2001)

    PubMed  CAS  Google Scholar 

  152. Buschhorn, B.A., Kostova, Z., Medicherla, B., Wolf, D.H.: A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett. 577, 422–6 (2004)

    Article  PubMed  CAS  Google Scholar 

  153. Bhamidipati, A., Denic, V., Quan, E.M., Weissman, J.S.: Exploration of the Topological Requirements of ERAD Identifies Yos9p as a Lectin Sensor of Misfolded Glycoproteins in the ER Lumen. Mol. Cell 19, 741–51 (2005)

    Article  PubMed  CAS  Google Scholar 

  154. Kim, W., Spear, E.D., Ng, D.T.: Yos9p Detects and Targets Misfolded Glycoproteins for ER-Associated Degradation. Mol. Cell 19, 753–64 (2005)

    Article  PubMed  CAS  Google Scholar 

  155. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P., Jakob, C.A.: Yos9 Protein Is Essential for Degradation of Misfolded Glycoproteins and May Function as Lectin in ERAD. Mol. Cell 19, 765–75 (2005)

    Article  PubMed  CAS  Google Scholar 

  156. Yoshida, Y., Chiba, T., Tokunaga, F., Kawasaki, H., Iwai, K., Suzuki, T., Ito, Y., Matsuoka, K., Yoshida, M., Tanaka, K., Tai, T.: E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–42 (2002)

    Article  PubMed  CAS  Google Scholar 

  157. Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., Tai, T.: Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem. 278, 43877–84 (2003)

    Article  PubMed  CAS  Google Scholar 

  158. Yoshida, Y., Adachi, E., Fukiya, K., Iwai, K., Tanaka, K.: Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep. 6, 239–44 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Funakoshi, Y. Free N-linked oligosaccharide chains: Formation and degradation. Glycoconj J 23, 291–302 (2006). https://doi.org/10.1007/s10719-006-6975-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-6975-x

Keywords

Navigation