Skip to main content
Log in

Characterization of the peptide-N 4-(N-acetylglucosaminyl) asparagine amidase (PNGase Se) fromSilene alba cells

  • Non-Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The peptide-N 4-(N-acetylglucosaminyl) asparagine amidase (PNGase Se) earlier described [Lhernould S., Karamanos Y., Bourgerie S., Strecker G., Julien R., Morvan H. (1992)Glycoconjugate J 9:191–97] was partially purified from culturedSilene alba cells using affinity chromatography. The enzyme is active between pH 3.0 and 6.5, and is stable in the presence of moderate concentrations of several other protein unfolding chemicals, but is readily inactivated by SDS. Although the enzyme cleaves the carbohydrate from a variety of animal and plant glycopeptides, it does not hydrolyse the carbohydrate from most of the corresponding unfolded glycoproteins in otherwise comparable conditions. The substrate specificity of this plant PNGase supports the hypothesis that this enzyme could be at the origin of the production of ‘unconjugated N-glycans’ in a suspension medium of culturedSilene alba cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GlcNAc:

N-acetylglucosamine

PNGase:

peptide-N 4-(N-acetylglucosaminyl) asparagine amidase

BSA:

bovine serum albumin

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TLC:

thin layer chromatography

HPAEC-PAD:

High pH anion exchange chromatography-pulsed amperometric detection

References

  1. Lhernould S, Karamanos Y, Bourgerie S, Strecker G, Julien R, Morvan H (1992)Glycoconjugate J 9:191–97.

    Google Scholar 

  2. Priem B, Solo Kwan J, Wieruszeski JM, Strecker G, Nazih H, Morvan (1990)Glycoconjugate J 7:121–32.

    Google Scholar 

  3. Priem P, Morvan H, Gross KC (1994)Biochem Soc Trans 22:398–402.

    Google Scholar 

  4. Tarentino AL, Trimble RB, Plummer TH Jr (1989)Methods Cell Biol 32:111–39.

    Google Scholar 

  5. Takahashi N, Nishibe H (1978)J Biochem 84:1467–73.

    Google Scholar 

  6. Plummer TH Jr, Elder JH, Alexander S, Phelan AW, Tarentino AL (1984)J Biol Chem 259:10700–4.

    Google Scholar 

  7. Yet MG, Wold FJ (1988)J Biol Chem 263:1, 118–22.

    Google Scholar 

  8. Plummer TH Jr, Phelan AW, Tarentino AL (1987)Eur J Biochem 163:167–73.

    Google Scholar 

  9. Tretter V, Altmann F, März I (1991)Eur J Biochem 199:647–52.

    Google Scholar 

  10. Kubelka V, Altmann F, Staudacher E, Tretter V, März L, Hard K, Kamerling JP, Vliegenhart FG (1993)Eur J Biochem 213:1193–1204.

    Google Scholar 

  11. Haslam SM, Reason AJ, Morris HR, Dell A (1994)Glycobiology 4:105–11.

    Google Scholar 

  12. Kamerling JP (1991)Pure Appl Chem 63:465–72.

    Google Scholar 

  13. Dubois J, Bouriquet R (1973)Bul Soc Bot N Fr 26–27:43–44.

    Google Scholar 

  14. Morvan H (1982)Physiol Veg 20:671–78.

    Google Scholar 

  15. Montreuil J, Bouquelet S, Debray H, Fournet B, Spik G, Strecker G (1986) InCarbohydrate Analysis: A Pratical Approach (Chaplin MF, Kennedy JF, eds.). pp. 143–204. IRL Press: Oxford, Washington.

    Google Scholar 

  16. Lowry OH, Rosenbough NJ, Farr AL, Randall RJ (1951)J Biol Chem 193:265–75.

    Google Scholar 

  17. Li YT, Li SH (1974)Methods Enzymol 28:702–14

    Google Scholar 

  18. Sarath G, De la Motte R, Wagner FW (1989) InProtein Assay Methods. Proteolytic enzymes: A practical approach (Beynon RJ, Bond JS, eds) pp. 25–55, IRL Press: Oxford.

    Google Scholar 

  19. Huang CG, Mayer HE Jr, Montgomery R (1970)Carbohydr Res 13:127–37.

    Google Scholar 

  20. Hsieh P, Rosner MR, Robbins (1983)J Biol Chem 258:2548–54.

    Google Scholar 

  21. Bourgerie S, Karamanos Y, Berger S, Julien R (1992)Glycoconjugate J 9:162–67.

    Google Scholar 

  22. Bourgerie S, Berger S, Strecker G, Julien R, Karamanos Y (1994)J Biochem Biophys Methods,28:283–93.

    Google Scholar 

  23. Spik G, Strecker G, Fournet B, Bouquelet S, Montreuil J, Dorland L, van Halbeek H, Vliegenthart JFG (1982)Eur J Biochem 121:413–19.

    Google Scholar 

  24. Aucouturier P, Mihaesco E, Mihaesco C, Preud'homme JL (1987)Mol Immunol 24:503–11.

    Google Scholar 

  25. Laemmli UK (1970) Nature (Lond) 227:680–85.

    Google Scholar 

  26. Burnette WN (1981)Anal Biochem 115:219–24.

    Google Scholar 

  27. Haselbeck A, Schickaneder E, von der Eltz H, Hösel W (1990)Anal Biochem 191:25–30.

    Google Scholar 

  28. Taga EM, Wahed A, Van Etten RL (1984)Biochem 23:815–22.

    Google Scholar 

  29. Tarentino AL, Plummer TH Jr (1987)Methods Enzymol 138:770–78.

    Google Scholar 

  30. Tarentino AL, Plummer, TH Jr (1982)J Biol Chem 257:10776–80.

    Google Scholar 

  31. Sturm A, Bergwerff AA, Vliegenthart JFG (1992)Eur J Biochem 204:313–16.

    Google Scholar 

  32. Plummer TH Jr, Tarentino AL (1981)J Biol Chem 256:10243–46.

    Google Scholar 

  33. Priem B, Gitti R, Bush CA, Gross KC (1993)Plant Physiol 102:445–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lhernould, S., Karamanos, Y., Lerouge, P. et al. Characterization of the peptide-N 4-(N-acetylglucosaminyl) asparagine amidase (PNGase Se) fromSilene alba cells. Glycoconjugate J 12, 94–98 (1995). https://doi.org/10.1007/BF00731874

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731874

Keywords

Navigation