Skip to main content

Advertisement

Log in

Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The management of diversity for conservation and breeding is of great importance for all plant species and is particularly true in perennial species, such as the coffee Coffea canephora. This species exhibits a large genetic and phenotypic diversity with six different diversity groups. Large field collections are available in the Ivory Coast, Uganda and other Asian, American and African countries but are very expensive and time consuming to establish and maintain in large areas. We propose to improve coffee germplasm management through the construction of genetic core collections derived from a set of 565 accessions that are characterized with 13 microsatellite markers. Core collections of 12, 24 and 48 accessions were defined using two methods aimed to maximize the allelic diversity (Maximization strategy) or genetic distance (Maximum-Length Sub-Tree method). A composite core collection of 77 accessions is proposed for both objectives of an optimal management of diversity and breeding. This core collection presents a gene diversity value of 0.8 and exhibits the totality of the major alleles (i.e., 184) that are present in the initial set. The seven proposed core collections constitute a valuable tool for diversity management and a foundation for breeding programs. The use of these collections for collection management in research centers and breeding perspectives for coffee improvement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthony F (1992) Les ressources génétiques des caféiers : collecte, gestion d’un conservatoire et évaluation de la diversité génétique. Collection Travaux and Documents Microfichés n°81, ORSTOM (now IRD), Paris

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. TheorAppl Genet 112:708–716

    Article  CAS  Google Scholar 

  • Belaj A, Dominguez-GarcíaMdC AS, Urdíroz NM, De la Rosa R, Satovic Z, Martín A, Kilian A, Trujillo I, Valpuesta V, Del Río C (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree GenetGenomes 8:365–378

    Article  Google Scholar 

  • Berthaud J (1986) Les ressources génétiques pour l’amélioration des caféiers africains diploïdes. Evaluation de la richesse génétique des populations sylvestres et de ses mécanismes organisateurs. Conséquences pour l’application, Paris (FRA), ORSTOM, 379 pp

  • Berthaud J, Charrier A (1988) Genetic resources of Coffea. In: Clarke RJ and Macrae R (eds) Coffee, vol. 4 Agronomy, London: Elsevier Applied Science, pp. 1–42

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Graziosi G, Lashermes P (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol 9:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Crouzillat D, Rigoreau M, Lefebvre-Pautigny F, Priyono, Broun P, Lambot C (2013) A coffee high density genetic map for quantitative trait loci analysis on agronomical, technological and biochemical characteristics in robusta and arabica. In: ASIC 24th International Conference on Coffee Science (ASIC Costa Rica 2012), 11–16 Nov 2012, San José, Costa Rica, 6 p

  • Cubry P (2008b) Structuration de la diversité génétique et analyse des patrons de déséquilibre de liaison de l’espèce Coffeacanephora Pierre ex Froehner. Thèse de doctorat de l’Université Montpellier II, Montpellier. http://tel.archivesouvertes.fr/tel-00365078/fr/

  • Cubry P, Musoli P, Legnaté H, Pot D, De Bellis F, Poncet V, Anthony F, Dufour M, Leroy T (2008) Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding. Genome 51:50–63

    Article  CAS  PubMed  Google Scholar 

  • Cubry P, De Bellis F, Pot D, Musoli P, Leroy T (2013a) Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genet Resour Crop Evol 60(2):483–501. doi:10.1007/s10722-012-9851-5

    Article  Google Scholar 

  • Cubry P, De Bellis F, Avia K, Bouchet S, Pot D, Dufour M, Legnate H, Leroy T (2013b) An initial assessment of linkage disequilibrium (LD) in coffee trees: LD patterns in groups of Coffea canephora Pierre using microsatellite analysis. BMC Genom 14:10. doi:10.1186/1471-2164-14-10

    Article  CAS  Google Scholar 

  • Davis AP, Tosh J, Ruch N, Fay MF (2011) Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot J Linn Soc 167:357–377. doi:10.1111/j.1095-8339.2011.01177.x

    Article  Google Scholar 

  • Dussert D, Lashermes P, Anthony F, Montagnon C, Trouslot P, Combes MC, Berthaud J, Noirot M, Hamon S (1999) Le caféier, Coffea canephora. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Diversité génétique des plantes tropicales cultivées. CIRAD, Montpellier, pp 175–194

    Google Scholar 

  • El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B (2013) Construction of core collections suitable for association mapping to optimize use of mediterranean olive (Olea europaea L.) genetic resources. PLoS ONE 8(5):e61265

    Article  PubMed Central  PubMed  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Frankel OH, Brown AHD (1984) Plant genetic resources today: a critical appraisal. Crop genetic resources. In: Holden JHW, Williams JT (eds) Conservation and evaluation. Georges Allen and Unwin Ltd, London, pp 249–257

  • Gomez C, Dussert S, Hamon P, Hamon S, Kochko A, Poncet V (2009) Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167

    Article  PubMed Central  PubMed  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  PubMed  Google Scholar 

  • Hamon S, Noirot M, Anthony F (1995) Developing a coffee core collection using the principal components score strategy with quantitative data. In: Brown AHD, van Hintum TJL, Morales EAV (eds) Hodgkin T. IPGRI Wiley-Sayce publication, Core collections of Plant Genetic resources, pp 117–126

    Google Scholar 

  • Haouane H, El Bakkali A, Moukhli A, Tollon C, Santoni S, Oukabli A, El Modafar C, Khadari B (2011) Genetic structure and core collection of the world olive germplasm bank of Marrakech: towards the optimized management and use of Mediterranean olive genetic resources. Genetica 139:1083–1094

    Article  PubMed Central  PubMed  Google Scholar 

  • ICO (2013) International Coffee Organization.ICO Annual Review 2012/13.http://www.ico.org/news/annual-review-2012-13-e.pdf

  • Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245

    Article  CAS  PubMed  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Leroy T, Montagnon C, Charrier A, Eskes AB (1993) Reciprocal recurrent selection applied to Coffeacanephora Pierre. I. Characterization and evaluation of breeding populations and value of intergroup hybrids. Euphytica 67:113–125

    Article  Google Scholar 

  • Leroy T, Montagnon C, Cilas C, Yapo AB, Charmetant P, Eskes AB (1997) Reciprocal recurrent selection applied to Coffea canephora Pierre. III.Genetic gains and results of first intergroup crosses. Euphytica 95:347–354

    Article  Google Scholar 

  • Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, Sabau X, Ferreira LP, Jourdan I, Pot D, Andrade AC, Glaszmann JC, Vieira LGE, Piffanelli P (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Leroy T, De Bellis F, Legnate H, Kanamura E, Gonzales G, Pereira LFP, Andrade AC, Charmetant P, Montagnon C, Cubry P, Marraccini P, Pot D, de Kochko A (2011) Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora. Tree Genet Genomes 7:781–798. doi:10.1007/s11295-011-0374-6

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • Montagnon C (2000) Optimisation des gains génétiques dans le schéma de sélection récurrente réciproque de Coffea canephora Pierre. ENSA Montpellier, France, PhD thesis

  • Montagnon C, Leroy T, Yapo A (1992) Diversité génotypique et phénotypique de quelques groupes de caféiers (Coffea canephora Pierre) en collection. Conséquences sur leur utilisation en sélection. Café Cacao Thé 36:187–198

    Google Scholar 

  • Montagnon C, Leroy T, Eskes AB (1998) Amélioration variétale de Coffea canephora. II. Les programmes de sélection et leurs résultats. Plantations, recherche, développement 5(2): 18–31

  • Montagnon C, Cubry P, Leroy T (2012) Amélioration génétique du caféier Coffea canephora Pierre :connaissances acquises, stratégies et perspectives. Cahiers de l’Agriculture 21:143–153. doi:10.1684/agr.2012.0556

    Google Scholar 

  • Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F, Pot D, Bieysse D, Charrier A, Leroy T (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646. doi:10.1139/G09-037

    Article  CAS  PubMed  Google Scholar 

  • Odong TJ, Jansen J, van Eeuwijk FA, van Hintum TJL (2013) Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet 126:289–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peakall R, Smouse P (2006) GENALEX6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin

  • Pessoa-Filho M, Rangel PHN, Ferreira ME (2010) Extracting samples of high diversity from thematic collections of large gene banks using a genetic-distance based approach. BMC Plant Biol 10:127

    Article  PubMed Central  PubMed  Google Scholar 

  • Poncet V, Dufour M, Hamon P, Hamon S, de Kochko A, Leroy T (2007) Development of genomic microsatellite markers in Coffea canephora and their transferability to other coffee species. Genome 50:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA (2009) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Rovelli P, Mettulio R, Anthony F, Anzueto F, Lashermes P (2000) Microsatellites in Coffea arabica L. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality, Kluwer Academic Publishers, The Netherlands, pp 123–133

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas AS (1947) The cultivation and selection of Robusta coffee in Uganda. Emp J Exp Agric 15:66–81

    Google Scholar 

  • Upadhyaya HD, Bramiel PJ, Sube S (2001) Development of a chickpea core subset using geographic distribution and qualitative traits. Crop Sci 41:206–210

    Article  Google Scholar 

  • Van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin 3, International Plant Genetic Resource Institute, Rome

  • Volk GM, Richards CM, Reilley AD, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hort Sci 130:203–210

    Google Scholar 

Download references

Acknowledgments

The plant material came from the Centre National de la Recherche Agronomique (CNRA), Divo, the Ivory Coast; from the Coffee Research Center (COREC), Mukono, Uganda; from the Institut National pour l’Etude et la Recherche Agronomiques (INERA) Luki, the Democratic Republic of the Congo; from the Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD), Sinnamary, French Guyana; from the Instituto Agronomico do Parana (IAPAR), Londrina, Brazil; from the Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Pichilinge, Ecuador; and from the Institut de Recherche pour le Développement (IRD), Montpellier, France. We thank Dr. Le Cunff (UMR AGAP, IFV, Montpellier, France) and JP Labouisse (UMR AGAP, Montpellier, France) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Leroy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Description of the collections and origin of the genotypes that were used in this study. (DOCX 15 kb)

10709_2014_9766_MOESM2_ESM.xlsx

This file consists of several tabs and describes the group-nested core collections: Summary tab: statistics and effectiveness of known diversity groups and group-nested core collections. The size of the optimal core collection within each group was assessed using redundancy curves as described in the materials and methods for the whole sample. Group tabs: composition (genotypes) of each group-nested core collection. (XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, T., De Bellis, F., Legnate, H. et al. Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora . Genetica 142, 185–199 (2014). https://doi.org/10.1007/s10709-014-9766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9766-5

Keywords

Navigation