Skip to main content
Log in

Genetic dissection of developmental behavior of grain weight in wheat under diverse temperature and water regimes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

As a quantitatively inherited trait related to high yield potential, grain weight (GW) development in wheat is constrained by abiotic stresses such as limited water supply and high temperature. Data from a doubled haploid population, derived from a cross of (Hanxuan 10 × Lumai 14), grown in four environments were used to explore the genetic basis of GW developmental behavior in unconditional and conditional quantitative trait locus (QTL) analyses using a mixed linear model. Thirty additive QTLs and 41 pairs of epistatic QTLs were detected, and were more frequently observed on chromosomes 1B, 2A, 2D, 4A, 4B and 7B. No single QTL was continually active during all stages or periods of grain growth. The QTLs with additive effects (A-QTLs) expressed in the period S1|S0 (the period from the flowering to the seventh day after) formed a foundation for GW development. GW development at these stages can be used as an index for screening superior genotypes under diverse abiotic stresses in a wheat breeding program. One QTL, i.e. Qgw.cgb-6A.2, showed high adaptability for water-limited and heat-stress environments. Many A-QTLs interacted with more than one other QTL in the two genetic models, such as Qgw.cgb-4B.2 interacted with five QTLs, showing that the genetic architecture underlying GW development involves a collective expression of genes with additive and epistatic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A-QTL:

Additive effect QTL

a effect:

Additive main effect

aa effect:

Epistatic main effect

DS:

Drought stress

DHLs:

Doubled haploid lines

E-QTL:

Epistatic effect QTL

E1:

DS and NT conditions

E2:

DS and HS conditions

E3:

WW and NT conditions

E4:

WW and HS conditions

GW:

Grain weight

GSL(+):

General high superior line

GSL(−):

General less superior line

H10:

Hanxuan 10

HS:

Heat stress

HSI:

Heat susceptibility index

L14:

Lumai 14

NT:

Natural temperature

PVE:

Phenotypic variation explained

QTL:

Quantitative trait loci

SL:

Superior line

TGW:

Thousand-grain weight

WW:

Well-watered

ae :

Additive QTL × environment interaction effect

aae :

Epistatic QTL × environment interaction effect

QE:

QTL × environment interaction effects

References

  • Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high temperature stress of wheat genotypes from major world regions. Crop Sci 30:1127–1132

    Article  Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H et al (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Cao G, Zhu J, He CX, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160

    Article  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genetics 5:618–625

    Article  CAS  Google Scholar 

  • Coventry SJ, Barr AR, Eglinton JK, McDonald GM (2003) The determinants and genome locations influencing grain weight and size in barly (Hordeum vulgare L.). Aus J Agric Res 54:1103–1115

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenziger PS et al (2006) High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88:74–87

    Article  PubMed  CAS  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes contolling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89:77–80

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Gross J, Protas M, Conrad M, Scheid P, Vidal O et al (2008) Synteny and candidate gene prediction using an anchored linkage map of Astyanax mexicanus. Proc Natl Acad Sci USA 105:20106–20111

    Article  PubMed  CAS  Google Scholar 

  • Jin SB (1996) Chinese wheat. Beijing, Chinese Agricultural Press. pp 97–98 (in Chinese)

  • Jing RL, Chang XP, Jia JZ, Hu RH (1999) Establishing wheat doubled haploid population for genetic mapping by anther culture. Biotechnology 9:4–8

    Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kumar N, Kulwal P, Gaur A, Tyagi A, Khurana J et al (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Lark K, Chase K, Adler F, Mansur L, Orf J (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660

    Article  PubMed  CAS  Google Scholar 

  • Levesque MPT, Vernoux W, Busch W, Cui H, Wang JY et al (2006) Whole genome analysis of the short-root developmental pathway in Arabidopsis. PLoS Biol 4:739–752

    CAS  Google Scholar 

  • Liao XZ, Wang J, Zhou RH, Ren ZL, Jia JZ (2008) Mining favorable alleles of QTLs conferring thousand-grain weight from synthetic wheat. Acta Agron Sin 34:1877–1884

    Article  CAS  Google Scholar 

  • Masojc P, Milczarski P (2009) Relationship between QTLs for preharvest sprouting and alpha-amylase activity in rye grain. Mol Breed 23:75–84

    Article  CAS  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Rogers WJ (1999) Catalogue of gene symbols for wheat. http://grain.jouy.inra.fr/ggpages/wgc

  • Moshatati A, Gharineh MH (2012) Effect of grain weight on germination and seed vigor of wheat. Intl J Agri Crop Sci 4(8):458–460

    Google Scholar 

  • Munir M, Chowdhry MA, Malik TA (2007) Correlation studies among yield and its components in bread wheat under drought conditions. Int J Agri Biol 9(2):287–290

    Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N et al (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  PubMed  CAS  Google Scholar 

  • Shi RL, Li HW, Tong YP, Jing RL, Zhang FS et al (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14:155–166

    Article  CAS  Google Scholar 

  • Su JY, Zheng Q, Li HW, Li B, Jing RL et al (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Sun DS, Li WB, Zhang ZC, Chen QS, Ning HL et al (2006) Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor Appl Genet 112:665–673

    Article  PubMed  CAS  Google Scholar 

  • Takai TY, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56:2107–2118

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Purugganan MD, Mackay TFC (2003) Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165:353–365

    PubMed  CAS  Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Kumar N, Harjit S et al (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Wahid A, Gelania S, Ashrafa M, Foolad MR (2007) Heat tolerance in plants: an overview. J Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ et al (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS et al (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Article  PubMed  CAS  Google Scholar 

  • Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ (1999) Time related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151:297–303

    PubMed  CAS  Google Scholar 

  • Wu RL, Ma CX, Zhu J, Casella G (2002) Mapping epigenetic quantitative trait loci (QTL) altering a developmental trajectory. Genome 45:28–33

    Article  PubMed  CAS  Google Scholar 

  • Wu XS, Wang ZHH, Chang XP, Jing RL (2010) Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot 61:2923–2937

    Article  PubMed  CAS  Google Scholar 

  • Wu XS, Chang XP, Jing RL (2012) Genetic Insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE 7(2):e31249

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Tan Y, Hua J, Sun X, Xu C et al (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998a) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274

    Article  CAS  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998b) Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics 150:1257–1265

    PubMed  CAS  Google Scholar 

  • Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2006) Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149:121–131

    Article  CAS  Google Scholar 

  • Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    Article  PubMed  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  PubMed  CAS  Google Scholar 

  • Zhou XG, Jing RL, Hao ZF, Chang XP, Zhang ZB (2005) Mapping QTL for seedling root traits in common wheat. Agric Sci in China 38:1951–1957

    CAS  Google Scholar 

  • Zhou LJ, Jiang L, Liu X, Chen H, Chen LM et al (2009) Mapping and interaction of QTLs for thousand-grain weight and percentage of grains with chalkiness in rice. Acta Agron Sin 35:255–261

    Article  CAS  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by CGIAR Generation Challenge Programme (G7010.02.01) and the National Key Technologies R&D Program (2011ZX08010-005). We thank Professor Robert A. McIntosh (Plant Breeding Institute, University of Sydney, NSW, Australia) for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruilian Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Wang, C., Chang, X. et al. Genetic dissection of developmental behavior of grain weight in wheat under diverse temperature and water regimes. Genetica 140, 393–405 (2012). https://doi.org/10.1007/s10709-012-9688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-012-9688-z

Keywords

Navigation