Skip to main content
Log in

Genetic and genomic approaches for improving biofuel production from maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Grasses, which are currently at the basis of cattle feeding, will, in the near future, be a major source of cell wall carbohydrates for sustainable biofuel production. The association of lignins with other matrix components, together with linkages between cell wall carbohydrates, greatly influences cell wall properties, including the degradability of structural polysaccharides by micro-organisms in animal rumen or industrial fermenters. The improvement in biofuel production from plants is based on the understanding of the cell wall composition and assembly, and on the discovery of genetic and genomic mechanisms involved in each component biosynthesis and their depositions in each lignified tissue. While nearly 40 QTL have been shown for lignin content, only seven locations appeared of greater importance in investigated genetic resources. Expression studies highlighted that several genes in the lignin pathway are less expressed in lines with higher cell wall degradability. However, only a few lignin pathway genes mapped in QTL positions, and the fully relevant candidates might be genes involved in regulation of lignin pathway genes, or in regulation of lignified tissue assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aimi H, Matsumoto Y, Meshitsuka G (2005) Structure of small lignin fragments retained in water-soluble polysaccharides extracted from birch MWL isolation residue. J Wood Sci 51:303–308. doi:10.1007/s10086-004-0646-y

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655. doi:10.1104/pp.126.2.643

    Article  PubMed  CAS  Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004a) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 327:847–860. doi:10.1016/j.crvi.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  • Barrière Y, Emile JC, Traineau R, Surault F, Briand M, Gallais A (2004b) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126

    Google Scholar 

  • Barrière Y, Riboulet C, Méchin V, Maltese S, Pichon M, Cardinal AJ, Lapierre C, Lübberstedt T, Martinant JP (2007) Genetics and genomics of lignification in grass cell walls based on maize as a model system. Genes Genomes Genomics 1:133–156

    Google Scholar 

  • Barrière Y, Thomas J, Denoue D (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 x F286. Plant Sci 175:585–595. doi:10.1016/j.plantsci.2008.06.009

    Article  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    PubMed  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186. doi:10.1038/nature02100

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96. doi:10.1016/S0981-9428(00)00166-2

    Article  CAS  Google Scholar 

  • Boyce CK, Cody GD, Fogel ML, Hazen RM, Alexander CMO, Knoll AH (2003) Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. Int J Plant Sci 164:691–702. doi:10.1086/377113

    Article  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517. doi:10.1016/j.pbi.2005.07.001

    Article  PubMed  CAS  Google Scholar 

  • Casler MD, Jung HJG (1999) Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Sci 39:1866–1873

    CAS  Google Scholar 

  • Chen F, Reddy MSS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124. doi:10.1111/j.1365-313X.2006.02857.x

    Article  PubMed  CAS  Google Scholar 

  • Civardi L, Rigau J, Puigdomenech P (1999) Nucleotide sequence of two cDNAs coding for caffeoyl-coenzyme A O-methyltransferase and their expression in maize (Accession Nos. AJ242980 and AJ242981). Plant Physiol 120:1206

    Google Scholar 

  • Cochard H (2002) Xylem embolism and drought-induced stomatal closure in maize. Planta 215:466–471. doi:10.1007/s00425-002-0766-9

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008) Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J Plant Physiol 165:976–982. doi:10.1016/j.jplph.2007.07.020

    Article  PubMed  CAS  Google Scholar 

  • Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S (2005) Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol Biol 59:753–769. doi:10.1007/s11103-005-0947-6

    Article  PubMed  CAS  Google Scholar 

  • Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet AM, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52:263–285. doi:10.1111/j.1365-313X.2007.03233.x

    Article  PubMed  CAS  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignin and lignin biosynthesis. Plant Physiol 123:453–461. doi:10.1104/pp.123.2.453

    Article  PubMed  CAS  Google Scholar 

  • Davin LB, Jourdes M, Patten AM, Kim KW, Vassao DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly:Comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25:1015–1090. doi:10.1039/b510386j

    Article  PubMed  CAS  Google Scholar 

  • de Obeso M, Caparros-Ruiz D, Vignols F, Puigdomenech P, Rigau J (2003) Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene 309:23–33. doi:10.1016/S0378-1119(03)00462-1

    Article  PubMed  Google Scholar 

  • Dettmer J, Elo A, Helariurra Y (2008) Hormone interactions during vascular development. Plant Mol Biol Online First

  • Dhillon B, Paul C, Zimmer E, Gurrath P, Klein D, Pollmer W (1990) Variation and covariation in stover digestibility traits in diallel crosses of maize. Crop Sci 30:931–936

    Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units. Phytochemistry 57:1069–1084. doi:10.1016/S0031-9422(01)00092-9

    Article  PubMed  CAS  Google Scholar 

  • Do CT, Pollet B, Thevenin J, Sibout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129. doi:10.1007/s00425-007-0558-3

    Article  PubMed  CAS  Google Scholar 

  • Fontaine AS, Briand M, Barrière Y (2003a) Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest. Maydica 48:75–82

    Google Scholar 

  • Fontaine AS, Bout S, Barrière Y, Vermerris W (2003b) Variation in cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: Analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry. J Agric Food Chem 51:8080–8087. doi:10.1021/jf034321g

    Article  PubMed  CAS  Google Scholar 

  • Fornale S, Sonbol FM, Maes T, Capellades M, Puigdomenech P, Rigau J, Caparros-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–823. doi:10.1007/s11103-006-9058-2

    Article  PubMed  CAS  Google Scholar 

  • Franken P, Schrell S, Peterson PA, Saedler H, Wienand U (1994) Molecular analysis of protein domain function encoded by the MYB-homologous maize gene-C1, gene-Zm-1 and gene-Zm-38. Plant J 6:21–30. doi:10.1046/j.1365-313X.1994.6010021.x

    Article  PubMed  CAS  Google Scholar 

  • Freudenberg K (1959) Biosynthesis and constitution of lignin. Nature 183:1152–1155. doi:10.1038/1831152a0

    Article  PubMed  CAS  Google Scholar 

  • Frey TJ, Coors JG, Shaver RD, Lauer JG, Eilert DT, Flannery PJ (2004) Selection for silage quality in the Wisconsin quality synthetic and related maize populations. Crop Sci 44:1200–1208

    Google Scholar 

  • Gälweiler L, Guan CH, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230. doi:10.1126/science.282.5397.2226

    Article  PubMed  Google Scholar 

  • Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, Boudet AM (1992) Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48–53. doi:10.1007/BF01160711

    Article  CAS  Google Scholar 

  • Goffner D, Van Doorsselaere J, Yahiaoui N, Samaj J, Grima-Pettenati J, Boudet AM (1998) A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression. Plant Mol Biol 36:755–765. doi:10.1023/A:1005991932652

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567. doi:10.1111/j.1365-313X.2005.02480.x

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD, Quideau S (1997) p-Hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on wall degradability. J Agric Food Chem 45:2530–2532. doi:10.1021/jf970029v

    Article  CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (1998a) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200. doi:10.1002/(SICI)1097-0010(199806)77:2<193::AID-JSFA25>3.0.CO;2-A

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1998b) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614. doi:10.1021/jf9800099

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability I. Lignin-cell wall matrix interactions. C R Biol 327:455–465. doi:10.1016/j.crvi.2004.02.009

    Article  PubMed  CAS  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D (2007a) Maizewall. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–363. doi:10.1104/pp.x106.086405

    Article  PubMed  CAS  Google Scholar 

  • Guillaumie S, Pichon M, Martinant JP, Bosio M, Goffner D, Barrière Y (2007b) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226:235–250. doi:10.1007/s00425-006-0468-9

    Article  PubMed  CAS  Google Scholar 

  • Guillaumie S, Goffner D, Barbier O, Martinant JP, Pichon M, Barriere Y (2008) Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. BMC Plant Biol 8:22

    Article  CAS  Google Scholar 

  • Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon R (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464. doi:10.1023/A:1012278106147

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553. doi:10.1046/j.1365-313X.1998.00153.x

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411. doi:10.1093/emboj/17.5.1405

    Article  PubMed  CAS  Google Scholar 

  • Hawkins SW, Boudet AM (1994) Purification and characterization of cinnamyl alcohol-dehydrogenase isoforms from the periderm of Eucalyptus gunnii Hook. Plant Physiol 104:75–84

    PubMed  CAS  Google Scholar 

  • Held BM, Wang HQ, John I, Wurtele ES, Colbert JT (1993) An messenger-RNA putatively coding for an O-methyltransferase accumulates preferentially in maize roots and is located predominantly in the region of the endodermis. Plant Physiol 102:1001–1008. doi:10.1104/pp.102.3.1001

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T, Ito Y, Kawamura I (1967) p-Hydroxyphenyl component of grass lignin and the role of tyrosine ammonia-lyase in its formation. Phytochemistry 6:875–881. doi:10.1016/S0031-9422(00)86035-5

    Article  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biochem 278:95–103

    CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoy-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465. doi:10.1105/tpc.020297

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Jeffery J (1987) Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur J Biochem 167:195–201. doi:10.1111/j.1432-1033.1987.tb13323.x

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalezduarte R, Jeffery J, Ghosh D (1995) Short-Chain Dehydrogenases Reductases (Sdr). Biochemistry 34:6003–6013. doi:10.1021/bi00018a001

    Article  PubMed  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi:10.1038/nature02363

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa K, Goodman MM, O’Malley DM (1999) Genetic and biochemical analysis of maize CAD. http://www.intl-pag.org/7/abstracts/pag7345.html, Town & Country Hotel, San Diego. January 17–21

  • Kirch HH, Bartels D, Wei YL, Schnable PS, Wood AJ (2004) The ALDH gene superfamily of Arabidopsis. Trends Plant Sci 9:371–377. doi:10.1016/j.tplants.2004.06.004

    Article  PubMed  CAS  Google Scholar 

  • Kuc J, Nelson OE (1964) The abnormal lignins produced by the brown-midrib mutants of maize. Arch Biochem Biophys 105:103–113. doi:10.1016/0003-9861(64)90240-1

    Article  PubMed  CAS  Google Scholar 

  • Lapierre C, Pollet B, Monties B (1991) Heterogeneous distribution of diarylpropane structures in spruce lignins. Phytochemistry 30:659–662. doi:10.1016/0031-9422(91)83747-9

    Article  CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6:3467–3473. doi:10.1021/bm058014q

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Meyer K, Chapple C, Douglas CJ (1997) Antisense suppression of 4-coumarate: coenzyme a ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985–1998

    Article  PubMed  CAS  Google Scholar 

  • Li LG, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed HY, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770. doi:10.1038/35008089

    Article  PubMed  CAS  Google Scholar 

  • Lopez OR, Kursar TA, Cochard H, Tyree MT (2005) Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species. Tree Physiol 25:1553–1562

    PubMed  Google Scholar 

  • Lundvall J, Buxton D, Hallauer A, George J (1994) Forage quality variation among maize inbreds: in vitro digestibility and cell-wall components. Crop Sci 34:1672–1678

    Article  Google Scholar 

  • Mahesh V, Million-Rousseau R, Ullmann P, Chabrillange N, Bustamante J, Mondolot L, Morant M, Noirot M, Hamon S, de Kochko A, Werck-Reichhart D, Campa C (2007) Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64:145–159. doi:10.1007/s11103-007-9141-3

    Article  PubMed  CAS  Google Scholar 

  • Martz F, Maury S, Pincon G, Legrand M (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36:427–437. doi:10.1023/A:1005969825070

    Article  PubMed  CAS  Google Scholar 

  • Méchin V, Argillier O, Menanteau V, Barrière Y, Mila I, Pollet B, Lapierre C (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580. doi:10.1002/(SICI)1097-0010(200004)80:5<574::AID-JSFA575>3.0.CO;2-R

    Article  Google Scholar 

  • Méchin V, Argillier O, Hébert Y, Guingo E, Moreau L, Charcosset A, Barrière Y (2001) Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci 41:690–697

    Google Scholar 

  • Méchin V, Argillier O, Rocher F, Hébert Y, Mila I, Pollet B, Barrière Y, Lapierre C (2005) In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. J Agric Food Chem 53:5872–5881. doi:10.1021/jf050722f

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Campbell WH (1998) Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development. Plant Mol Biol 38:513–520. doi:10.1023/A:1006071708728

    Article  PubMed  CAS  Google Scholar 

  • Morrison WH, Akin DE, Himmelsbach DS, Gamble GR (1993) Investigation of the ester-linked and ether-linked phenolic constituents of cell-wall types of normal and brown-midrib pearl-millet using chemical isolation, microspectrophotometry and C-13 NMR-spectroscopy. J Sci Food Agric 63:329–337. doi:10.1002/jsfa.2740630311

    Article  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana reduced epidermal fluorescence1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554. doi:10.1105/tpc.017509

    Article  PubMed  CAS  Google Scholar 

  • Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA (2008) Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell type. New Phytol 179:738–750. doi:10.1111/j.1469-8137.2008.02502.x

    Article  PubMed  CAS  Google Scholar 

  • Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–2148. doi:10.1242/dev.00441

    Article  PubMed  CAS  Google Scholar 

  • Parvathi K, Chen F, Guo DJ, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202. doi:10.1046/j.1365-313x.2001.00956.x

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson P, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    PubMed  CAS  Google Scholar 

  • Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding Cinnamoyl-CoA Reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676. doi:10.1023/A:1006060101866

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83. doi:10.1046/j.1365-313X.1998.00014.x

    Article  CAS  Google Scholar 

  • Provan GJ, Scobbie L, Chesson A (1997) Characterisation of lignin from CAD and OMT deficient Bm mutants of maize. J Sci Food Agric 73:133–142. doi:10.1002/(SICI)1097-0010(199702)73:2<133::AID-JSFA696>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  • Puigdomenech P, Perez P, Murigneux A, Martinant JP, Tixier MH, Rigau J, Civardi L, Maes T (2001) Identifying genes associated with a QTL corn digestibility locus. Patent WO 0155395-A 1, 3. 2-8-2001

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci USA 95:12803–12808. doi:10.1073/pnas.95.22.12803

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008a) Lignification:are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In: Daayf F, El Hadrami A, Adam L, Ballance GM (eds) Recent advances in polyphenol research. Wiley-Blackwell, Oxford, pp 36–66

    Chapter  Google Scholar 

  • Ralph J, Kim H, Lu F, Grabber JH, Leple JC, Berrio-Sierra J, Derikvand MM, Jouanin L, Boerjan W, Lapierre C (2008b) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J 53:368–379. doi:10.1111/j.1365-313X.2007.03345.x

    Article  PubMed  CAS  Google Scholar 

  • Riboulet C, Lefèvre B, Denoue D, Barrière Y (2008) Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in a set of 19 lines at silage harvest maturity. Maydica 53:11–19

    Google Scholar 

  • Riboulet C, Guillaumie S, Méchin V, Bosio M, Pichon M, Goffner D, Lapierre C, Pollet B, Lefèvre B, Martinant JP, Barrière Y (2009) Kinetics of phenylpropanoid gene expression in maize growing internodes: Relationships with cell wall deposition. Crop Sci 49:211–223. doi:10.2135/cropsci2008.03.0130

    Article  CAS  Google Scholar 

  • Roadhouse FE, MacDougall D (1956) A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation. Biochem J 63:33–39

    PubMed  CAS  Google Scholar 

  • Roesler J, Krekel F, Amrhein N, Schmid J (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113:175–179. doi:10.1104/pp.113.1.175

    Article  CAS  Google Scholar 

  • Roussel V, Gibelin C, Fontaine AS, Barrière Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize II—QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47:9–20

    Google Scholar 

  • Schöch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biochem 276:36566–36574

    Google Scholar 

  • Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68:1521–1529. doi:10.1016/j.phytochem.2007.03.022

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lübberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a flint × flint maize recombinant inbred line population. BMC Genomics 1:8

    Google Scholar 

  • Sindhu A, Langewisch T, Olek A, Multani DS, Mccann MC, Vermerris W, Carpita NC, Johal G (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol 145:1444–1459. doi:10.1104/pp.107.102582

    Article  PubMed  CAS  Google Scholar 

  • Skibbe D, Liu F, Wen T, Yandeau M, Cui X, Cao J, Simmons C, Schnable P (2002) Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol Biol 48:751–764. doi:10.1023/A:1014870429630

    Article  PubMed  CAS  Google Scholar 

  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in 3 species of conifers. Plant Cell Environ 13:427–436. doi:10.1111/j.1365-3040.1990.tb01319.x

    Article  Google Scholar 

  • Terashima N, Fukushima K (1993) Comprehensive model of the lignified plant cell wall. Forage cell wall structure and digestibility, International symposium on forage cell wall structure and digestibility. Madison, Wisconsin pp 7–10 Oct

  • Thomas J, Guillaumie S, Verdu C, Denoue D, Pichon M, Barriere Y (2009) Cell wall phenylpropanoid-related gene expression in early maize recombinant inbred lines differing in parental alleles at a major lignin QTL position. Mol Breed (submitted)

  • Tobias CM, Chow EK (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220:678–688. doi:10.1007/s00425-004-1385-4

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson PB (1995) Non homology of vascular organization in monocotyledons and dicotyledons. In: Rudall PJ, Cribbb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons systematic and evolution. Royal Botanic Garden, UK, pp 589–622

    Google Scholar 

  • Tsiantis M, Brown MIN, Skibinski G, Langdale JA (1999a) Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol 121:1163–1168. doi:10.1104/pp.121.4.1163

    Article  PubMed  CAS  Google Scholar 

  • Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA (1999b) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156. doi:10.1126/science.284.5411.154

    Article  PubMed  CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    Article  PubMed  CAS  Google Scholar 

  • Wilson JR, Hatfield RD (1997) Structural and chemical changes of cell wall types during stem development:Consequences for fibre degradation by rumen microflora. Aust J Agric Res 48:165–180. doi:10.1071/A96051

    Article  Google Scholar 

  • Wilson JR, Mertens DR (1995) Cell-wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci 35:251–259

    Article  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202. doi:10.1146/annurev.arplant.53.100301.135245

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH, Freshour G, Hahn MG, Burk DH, Zhong RQ (2002) Vascular development in Arabidopsis. International Review of Cytology—A Survey of Cell Biology 220:225–256

    Article  CAS  Google Scholar 

  • Yin YH, Zhu Q, Dai SH, Lamb C, Beachy RN (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16:5247–5259. doi:10.1093/emboj/16.17.5247

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572. doi:10.1016/j.pbi.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Lee C, McCarty RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in arabidopsis. Plant Cell Online First

Download references

Acknowledgments

This work, presented at the Eucarpia meeting in Valencia (Spain, 9–12 September 2008), was funded by both the French plant genomic project Génoplante and by the breeding companies involved in the PROMAÏS—INRA network on maize cell wall lignification and degradatibility (Advanta, Caussade Semences, Limagrain Genetics, MaïsAdour, Monsanto SAS, Pioneer Génétique, Pau Euralis, R2n RAGT Semences, SDME KWS France, Syngenta seeds). Thanks to Christiane Minault, Dominique Denoue, and Pascal Vernoux for their help in experimentation carried out in Lusignan. Thanks to Corinne Melin for the maize reference database management and her help in preparation of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barrière.

Additional information

Proceeding of the presentation given at the Eucarpia meeting in Valencia (Spain, 9–12 September 2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrière, Y., Méchin, V., Riboulet, C. et al. Genetic and genomic approaches for improving biofuel production from maize. Euphytica 170, 183–202 (2009). https://doi.org/10.1007/s10681-009-9923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9923-6

Keywords

Navigation