Skip to main content
Log in

Cell Wall Diversity in Forage Maize: Genetic Complexity and Bioenergy Potential

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage maize doubled haploid (DH) population, we indicate the substantial degree of highly heritable (h 2 > ~65 %) diversity in cell wall composition and bioconversion potential available within this important agronomic species. In addition to variation in lignin content, extensive genotypic diversity was found for the concentration and composition of hemicelluloses, the latter found to exert an influence on the recalcitrance of maize cell walls. Our results also demonstrate that forage maize harbors considerable variation for the release of cell wall glucose following pretreatment and enzymatic saccharification. In fact, the extent of variability observed for bioconversion efficiency (nearly 30 % between population extremes) greatly exceeded ranges reported in previous studies. In our population, a total of 52 quantitative trait loci (QTL) were detected for biomass compositional and bioconversion characters across 8 chromosomes. Noteworthy, from eight QTL related to bioconversion properties, five were previously unidentified and warrant further investigation. Ultimately, our results substantiate forage maize germplasm as a valid genetic resource for advancing cell wall degradability traits in bioenergy maize-breeding programs. However, since useful variation for cell wall traits is defined by QTL with “minor” effects (R 2 = ~10 %), cultivar development for bio-based applications will rely on advanced marker-assisted selection procedures centered on detecting and increasing the frequency of favorable QTL alleles in elite flint and dent germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bacovsky D (2010) How close are second-generation biofuels? Biofuels Bioprod Bioref 4(3):249–252

    Article  CAS  Google Scholar 

  2. Saddler JN, Mabee WE, Simms R, Taylor M (2012) The biorefining story: progress in the commercialization of biomass-to-ethanol. In: Forests in development: a vital balance. Springer, pp 39-51

  3. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    Article  CAS  PubMed  Google Scholar 

  4. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  5. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47(Supplement_3):S-142–S-153

    Article  Google Scholar 

  6. Elander R, Dale B, Holtzapple M, Ladisch M, Lee YY, Mitchinson C, Saddler J, Wyman C (2009) Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose 16(4):649–659

    Article  CAS  Google Scholar 

  7. Yang B, Wyman CE (2007) Pretreatment: the key to unlocking low–cost cellulosic ethanol. Biofuels Bioprod Bioref 1:26–40

    Google Scholar 

  8. Torres AF, van der Weijde T, Dolstra O, Visser RG, Trindade LM (2013) Effect of maize biomass composition on the optimization of dilute-acid pretreatments and enzymatic saccharification. BioEnergy Res 6(3):1038–1051

    Article  CAS  Google Scholar 

  9. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  PubMed  Google Scholar 

  10. Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5

    Article  CAS  PubMed  Google Scholar 

  11. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  PubMed  Google Scholar 

  12. Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13(8):415–420

    Article  CAS  PubMed  Google Scholar 

  13. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761

    Article  CAS  PubMed  Google Scholar 

  14. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z-Y (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108(9):3803–3808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10(9):1067–1076

    Article  CAS  PubMed  Google Scholar 

  16. Dien B, Sarath G, Pedersen J, Sattler S, Chen H, Funnell-Harris D, Nichols N, Cotta M (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res 2(3):153–164

    Article  Google Scholar 

  17. Lorenzana RE, Lewis MF, Jung HJG, Bernardo R (2010) Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50(2):541–555

    Article  Google Scholar 

  18. Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). BioEnergy Res 1(3–4):193–204

    Article  Google Scholar 

  19. Sarath G, Dien B, Saathoff AJ, Vogel KP, Mitchell RB, Chen H (2011) Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresour Technol 102(20):9579–9585

    Article  CAS  PubMed  Google Scholar 

  20. Torres AF, Visser RG, Trindade LM (2013) Bioethanol from maize cell walls: genes, molecular tools and breeding prospects. GCB Bioenergy. doi:10.1111/gcbb.12164

    Google Scholar 

  21. Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107. doi:10.3389/fpls.2013.00107

    PubMed Central  PubMed  Google Scholar 

  22. Lorenz A, Coors J, Hansey C, Kaeppler S, De Leon N (2010) Genetic analysis of cell wall traits relevant to cellulosic ethanol production in maize (L.). Crop Sci 50(3):842–852

    Article  CAS  Google Scholar 

  23. Lorenz AJ, Coors JG, de Leon N, Wolfrum EJ, Hames BR, Sluiter AD, Weimer PJ (2009) Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci 49(1):85–98

    Article  CAS  Google Scholar 

  24. Lauer J, Coors J, Flannery P (2001) Forage yield and quality of corn cultivars developed in different eras. Crop Sci 41(5):1449–1455

    Article  Google Scholar 

  25. Argillier O, Barrière Y, Lila M, Jeanneteau F, Gélinet K, Ménanteau V (1996) Genotypic variation in phenolic components of cell-walls in relation to the digestibility of maize stalks. Agronomie 16(2):123–130

    Article  Google Scholar 

  26. Barrière Y, Thomas J, Denoue D (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838× F286. Plant Sci 175(4):585–595

    Article  Google Scholar 

  27. Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production. Maydica 54(2):161–198

    Google Scholar 

  28. Barrière Y, Charcosset A, Denoue D, Madur D, Bauland C, Laborde J (2010) Genetic variation for lignin content and cell wall digestibility in early maize lines derived from ancient landraces. Maydica 55(1):65–74

    Google Scholar 

  29. Fontaine A-S, Bout S, Barrière Y, Vermerris W (2003) Variation in cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry. J Agric Food Chem 51(27):8080–8087

    Article  CAS  PubMed  Google Scholar 

  30. Marita JM, Vermerris W, Ralph J, Hatfield RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51(5):1313–1321

    Article  CAS  PubMed  Google Scholar 

  31. Marvin HJP, Krechting CF, Van Loo EN, Snijders CHA, Dolstra O (1995) Relationship between stalk cell wall digestibility and fibre composition in maize. J Sci Food Agric 69(2):215–221

    Article  CAS  Google Scholar 

  32. Méchin V, Argillier O, Hébert Y, Guingo E, Moreau L, Charcosset A, Barrière Y (2001) Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci 41(3):690–697

    Article  Google Scholar 

  33. Dolstra O, Medema J (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings 15th congress maize and sorghum section of Eucarpia. pp 4-8

  34. Dolstra O, Medema J, De Jong A (1992) Genetic improvement of cell-wall digestibility in forage maize (Zea mays L.). I. Performance of inbred lines and related hybrids. Euphytica 65(3):187–194

    Article  Google Scholar 

  35. Goering H, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications), vol 379. US Agricultural Research Service, Washington

    Google Scholar 

  36. Englyst HN, Cummings JH (1984) Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 109(7):937–942

    Article  CAS  Google Scholar 

  37. Selig M, Weiss N, Ji Y (1996) Enzymatic saccharification of lignocellulosic biomass; LAP-009 NREL analytical procedure. National Renewable Energy Laboratory, Golden

    Google Scholar 

  38. Dewey DR, Lu K (1959) A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agron J 51(9):515–518

    Article  Google Scholar 

  39. Jung H-JG, Bernardo R (2012) Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms. BioEnergy Res 5(2):319–329

    Article  CAS  Google Scholar 

  40. Méchin V, Argillier O, Menanteau V, Barrière Y, Mila I, Pollet B, Lapierre C (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80(5):574–580

    Article  Google Scholar 

  41. Courtial A, Méchin V, Reymond M, Grima-Pettenati J, Barrière Y (2014) Colocalizations between several QTLs for cell wall degradability and composition in the F288× F271 early maize RIL progeny raise the question of the nature of the possible underlying determinants and breeding targets for biofuel capacity. BioEnergy Res 7:142–156

    Article  Google Scholar 

  42. Riboulet C, Lefevre B, Denoue D, Barrière Y (2008) Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in set of 19 lines at silage harvest maturity. Maydica 53:11–19

    Google Scholar 

  43. Vermerris W, Sherman DM, McIntyre LM (2010) Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition. J Exp Bot 61(9):2479–2490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Grabber J, Hatfield R, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry 40:1077–1082

    Article  CAS  Google Scholar 

  45. Grabber J, Ralph J, Hatfield R (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem 48:6106–6113

    Article  CAS  PubMed  Google Scholar 

  46. Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. C R Biol 327(5):455–465

    Article  CAS  PubMed  Google Scholar 

  47. Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, Yu X, Seffen KA, Stephens E, Turner SR, Dupree P (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci U S A 107(40):17409–17414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J 74(3):423–434

    Article  CAS  PubMed  Google Scholar 

  49. Kabel MA, van den Borne H, Vincken JP, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69(1):94–105

    Article  CAS  Google Scholar 

  50. Grabber JH, Hatfield RD, Ralph J (1998) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77(2):193–200

    Article  CAS  Google Scholar 

  51. Grabber JH, Mertens DR, Kim H, Funk C, Lu F, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 89(1):122–129

    Article  CAS  Google Scholar 

  52. Grabber JH, Ralph J, Hatfield RD (1998) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46(7):2609–2614

    Article  CAS  Google Scholar 

  53. Penning BW, Hunter CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF (2009) Genetic resources for maize cell wall biology. Plant Physiol 151(4):1703–1728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wallace J, Larsson S, Buckler E (2013) Entering the second century of maize quantitative genetics. Heredity 112:30–38

    Article  PubMed Central  PubMed  Google Scholar 

  55. Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9(9):426–432

    Article  CAS  PubMed  Google Scholar 

  56. Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149(1):383–403

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS ONE 8(6):e67066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Barrière Y (2013) Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. Theor Appl Genet 126(5):1151–1165

    Article  CAS  PubMed  Google Scholar 

  59. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44(2):217–220

    Article  CAS  PubMed  Google Scholar 

  60. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bennetzen J, Hake S, Vermerris W (2009) Cell wall biosynthetic genes of maize and their potential for bioenergy production. In: Bennetzen J, Hake S (eds) Handbook of maize. Springer, New York, pp 741–767

    Google Scholar 

  62. Carrier M, Joubert J-E, Danje S, Hugo T, Görgens J, Knoetze JH (2013) Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresour Technol 150:129–138

    Article  CAS  PubMed  Google Scholar 

  63. Burhenne L, Messmer J, Aicher T, Laborie M-P (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrol 101:177–184

    Article  CAS  Google Scholar 

  64. Vandenbrink JP, Hilten RN, Das K, Paterson AH, Feltus FA (2012) Analysis of crystallinity index and hydrolysis rates in the bioenergy crop Sorghum bicolor. BioEnergy Res 5(2):387–397

    Article  CAS  Google Scholar 

  65. Zhang W, Yi Z, Huang J, Li F, Hao B, Li M, Hong S, Lv Y, Sun W, Ragauskas A (2013) Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2S04 pretreatments in Miscanthus. Bioresour Technol 130:30–37

    Article  CAS  PubMed  Google Scholar 

  66. Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose–synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 1(1):51–61

    Article  CAS  Google Scholar 

  67. Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleau J-P, Berenguer J, Puigdomènech P (2012) Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant 5(4):817–830

    Article  PubMed  Google Scholar 

  68. Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang CP, Sherman DM (2012) Tissue–specific biomass recalcitrance in corn stover pretreated with liquid hot–water: enzymatic hydrolysis (part 1). Biotechnol Bioeng 109(2):390–397

    Article  CAS  PubMed  Google Scholar 

  69. Lam M, Martinez Y, Barbier O, Jauneau A, Pichon M, Barrière Y, Motto M (2013) Maize cell wall degradability, from whole plant to tissue level: different scales of complexity. Maydica 58(2013):103–110

    Google Scholar 

  70. Lam MSWQ, Martinez Y, Barbier O, Jauneau A, Balzergue S, Huguet S, Pollet B, Méchin V, Guillon F, Robert P (2013) Combined approaches provide an anatomical and transcriptomic fingerprint of maize cell wall digestibility. Maydica 58(2013):274–287

    Google Scholar 

  71. Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome–wide atlas of transcription during maize development. Plant J 66(4):553–563

    Article  CAS  PubMed  Google Scholar 

  72. Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11(3):308–313

    Article  CAS  PubMed  Google Scholar 

  73. Roussel V, Gibelin C, Fontaine A, Barriere Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II. QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47(1):9–20

    Google Scholar 

  74. Barrière Y, Méchin V, Lefevre B, Maltese S (2012) QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line. Theor Appl Genet 125(3):531–549

    Article  PubMed  Google Scholar 

  75. Truntzler M, Barrière Y, Sawkins M, Lespinasse D, Betran J, Charcosset A, Moreau L (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121(8):1465–1482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Genencor International B.V. for kindly supplying us with their cellulolytic enzyme cocktails used in this study. Within the framework of the Carbohydrate Competence Centre, this research has been financially supported by the European Union, the European Regional Development Fund, and the Northern Netherlands Provinces (Samenwerkingsverband Noord-Nederland), KOERS NOORD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa M. Trindade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 35 kb)

Fig. S1

Survey of QTLs identified for biomass compositional and bioconversion characters in a forage maize DH population. Colored bars indicate total number of QTLs identified per trait. Circular points refer to the cumulative explained variance of all identified QTLs for a given trait, as a proportion of observed heritable variation (h 2) (PPTX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, A.F., Noordam-Boot, C.M.M., Dolstra, O. et al. Cell Wall Diversity in Forage Maize: Genetic Complexity and Bioenergy Potential. Bioenerg. Res. 8, 187–202 (2015). https://doi.org/10.1007/s12155-014-9507-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9507-8

Keywords

Navigation