Skip to main content
Log in

Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chlorogenic acid (5-CQA) is one of the major soluble phenolic compounds that is accumulated in coffee green beans. With other hydroxycinnamoyl quinic acids (HQAs), this compound is accumulated in particular in green beans of the cultivated species Coffea canephora. Recent work has indicated that the biosynthesis of 5-CQA can be catalyzed by a cytochrome P450 enzyme, CYP98A3 from Arabidopsis. Two full-length cDNA clones (CYP98A35 and CYP98A36) that encode putative p-coumaroylester 3′-hydroxylases (C3′H) were isolated from C. canephora cDNA libraries. Recombinant protein expression in yeast showed that both metabolized p-coumaroyl shikimate at similar rates, but that only one hydroxylates the chlorogenic acid precursor p-coumaroyl quinate. CYP98A35 appears to be the first C3′H capable of metabolising p-coumaroyl quinate and p-coumaroyl shikimate with the same efficiency. We studied the expression patterns of both genes on 4-month old C. canephora plants and found higher transcript levels in young and in highly vascularized organs for both genes. Gene expression and HQA content seemed to be correlated in these organs. Histolocalization and immunolocalization studies revealed similar tissue localization for caffeoyl quinic acids and p-coumaroylester 3′-hydroxylases. The results indicated that HQA biosynthesis and accumulation occurred mainly in the shoot tip and in the phloem of the vascular bundles. The lack of correlation between gene expression and HQA content observed in some organs is discussed in terms of transport and accumulation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CQA:

caffeoyl quinic acid

5-CQA:

chlorogenic acid

HQA:

hydroxycinnamoyl quinic acid

C3′H:

p-coumaroyl ester 3′-hydroxylases

HQT:

hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase

HCT:

hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyl transferase

CODEHOP:

consensus degenerate hybrid oligonucleotide primers

CYP:

cytochrome P450 monooxygenases

References

  • Abdulrazzak N, Pollet B, Ehlting J et al (2006) A coumaroyl-3′-ester hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

    Article  PubMed  CAS  Google Scholar 

  • Aerts RJ, Baumann TW (1994) Distribution and utilization of chlorogenic acid in Coffea seedlings. J Exp Bot 45:497–503

    Article  CAS  Google Scholar 

  • Anthony F, Clifford MN, Noirot M (1993) Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine and mozambioside contents. Genet Resour Crop Evol 40:61–70

    Article  Google Scholar 

  • Bertrand C, Noirot M, Doulbeau S et al (2003) Chlorogenic acid content swap during fruit maturation in Coffea pseudozanguebariae. Qualitative comparison with leaves. Plant Sci 165:1355–1361

    Article  CAS  Google Scholar 

  • Campa C, Doulbeau S, Dussert S et al (2005) Qualitative relationship between caffeine and chlorogenic acid contents among wild Coffea species. Food Chem 93:135–139

    Article  CAS  Google Scholar 

  • Clifford MN (1985) Chlorogenic acids. In: Clarke RJ, Macrae R (eds) Coffee, I: chemistry. Elsevier Applied Science, Amsterdam, pp 153–202

    Google Scholar 

  • Clifford MN (2000) Chlorogenic acids and other cinnamates—nature, occurence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  • Colonna JP (1986) Biosynthèse et renouvellement de l’acide chlorogénique et des depsides voisins dans le genre Coffea. Café Cacao Thé 30:247–258

    CAS  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR et al (2002a) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    Article  CAS  Google Scholar 

  • Franke R, Hemm MR, Denault JW et al (2002b) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  CAS  Google Scholar 

  • Gang DR, Beuerle T, Ullmann P et al (2002) Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol 130:1536–1544

    Article  PubMed  CAS  Google Scholar 

  • Grace SC, Logan BA, Adams WW III (1998) Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant, in Mahonia repens. Plant Cell Environ 21:513–521

    Article  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F et al (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Jeong Y-M, Mun J-H, Lee I et al (2006) Distinct roles of the first introns on the expression of Arabidopsis profiling gene family members. Plant Physiol 140:196–209

    Article  PubMed  CAS  Google Scholar 

  • Jin U-H, Lee J-Y, Kang S-K et al (2005) A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: Isolation and identification from methanol extract of Euonymus alatus. Life Sci 77:2760–2769

    Article  PubMed  CAS  Google Scholar 

  • Kühnl T, Koch U, Heller W et al (1987) Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-d-quinate/shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys 258:226–232

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Ky CL, Louarn J, Dussert S et al (2001) Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and canephora P. accessions. Food Chem 75:223–230

    Article  CAS  Google Scholar 

  • Ky CL, Noirot M, Hamon S (1997) Comparison of five purification methods for chlorogenic acids in green coffee beans (Coffea sp.) J Agric Food Chem 45:786–790

    Article  CAS  Google Scholar 

  • Leloup V, Louvrier A, Liardon R (1995) Degradation mechanisms of chlorogenic acids during roasting. In: Proceedings of the 16th International Congress ASIC, Kyoto, pp 9–14

  • Macheix J-J, Fleuriet A (1998) Phenolic acids in fruits. In: Rice-Evans CA, Packer L (eds) Flavonoids in health and disease. Marcel Decker Inc, New York, pp 35–59

    Google Scholar 

  • Maher EA, Bate NJ, Ni W et al (1994) Increase disease suceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci USA 91:7802–7806

    Article  PubMed  CAS  Google Scholar 

  • Mahesh V, Rakotomalala JJ, Le Gal L et al (2006). Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep 25:986–992

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Morino K, Miyashita M et al (2003) Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy. Plant Cell Physiol 44:510–517

    Article  PubMed  CAS  Google Scholar 

  • Molgaard P, Ravn H (1988) Evolutionary aspects of caffeoyl ester distribution in Dicotyledons. Phytochem 8:2411–2421

    Article  Google Scholar 

  • Mondolot L, Roussel J-L, Andary C (2001) New applications for an old lignified element staining reagent. Histochem J 33:379–385

    Article  PubMed  CAS  Google Scholar 

  • Mondolot L, La Fisca P, Buatois B et al (2006) Evolution in Caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Annals Bot 98:33–40

    Article  CAS  Google Scholar 

  • Mondolot-Cosson L, Andary C, Guang-Hui D et al (1997) Histolocalization de substances phénoliques intervenant lors d’interactions plante-pathogène chez le tournesol et la vigne. Acta Botanica Gallica 144:353–362

    Google Scholar 

  • Morant M, Hehn A, Werck-Reichhart D (2002) Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC Plant Biol 2:7

    Article  PubMed  Google Scholar 

  • Morant M, Schoch GA, Ullmann P et al (2007) Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol 63:1–19

    Article  PubMed  Google Scholar 

  • Neu R (1957) A new reagent for differentiating and determining flavones on paper chromatograms. Naturwissenschaften 43:82

    Article  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotech 22:746–754

    Article  CAS  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  • Paquette SM, Bak S, Feyereisen R (2000) Intron-exon organization and phylogeny in a large superfamily, the paralogous Cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19:307–317

    Article  PubMed  CAS  Google Scholar 

  • Pompon D, Louerat B, Bronine A et al (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schoch G, Goepfert S, Morant M et al (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Stöckigt J, Zenk H (1974) Enzymatic synthesis of chlorogenic acid from caffeoyl coenzyme A and quinic acid. Phytochem 42:131–134

    Google Scholar 

  • Takahama U (1998) Ascorbic acid-dependant regulation of redox levels of chlorogenic acid and its isomers in the apoplast of leaves of Nicotiana tabacum L. Plant Cell Physiol 39:681–689

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich B, Zenk M (1979) Partial purification and properties of p-hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase from higher plants. Phytochem 18:929–933

    Article  CAS  Google Scholar 

  • Ulbrich B, Zenk M (1980) Partial purification and properties of p-hydroxycinnamoyl-CoA: shikimate-phydroxycinnamoyltransferase from higher plants. Phytochem 19:1625–1629

    Article  CAS  Google Scholar 

  • Villegas RJA, Kojima M (1986) Purification and characterization of Hydroxycinnamoyl d-Glucose/Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. J Biol Chem 261:8729–8733

    PubMed  CAS  Google Scholar 

  • Zang LY, Cosma G, Gardner H et al (2003) Effect of chlorogenic acid on hydroxyl radical. Mol Cell Biochem 247:205–210

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Mahesh V. was granted by Avesthagen graine and J. Bustamante by INIA from Venezuela

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Campa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh, V., Million-Rousseau, R., Ullmann, P. et al. Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64, 145–159 (2007). https://doi.org/10.1007/s11103-007-9141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9141-3

Keywords

Navigation