Skip to main content
Log in

Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The expression of phenylpropanoid and related genes was investigated in bm1, bm2, bm3, and bm4 near-isogenic maize plants at the 4–5 leaf stage using a gene-specific cell wall macro-array. The bm3 mutant, which is mutated in the caffeic acid O-methyltransferase (COMT) gene, exhibited the lowest number of differentially expressed genes. Although no other phenylpropanoid gene had an altered expression, two distinct OMT and two cytochrome P450 genes were overexpressed suggesting the activation of alternative hydroxylation/methylation pathways. The bm1 mutant had the highest number of differentially expressed genes, all of which were under-expressed. Bm1 mutant plants were affected not only in cinnamyl alcohol dehydrogenase (bm1 related CAD) gene expression as expected, but also in the expression of other CAD/SAD gene family members and several regulatory genes including MYB, ARGONAUTE and HDZip. As originally believed, the bm1 mutation could be localized at the CAD locus, but more probably in a gene that regulates the expression of the CAD gene family. The profile of under-expressed genes in the bm2 mutant is nearly similar to that of bm1. These genes fell under several functional categories including phenylpropanoid metabolism, transport and trafficking, transcription factors and regulatory genes. As the bm2 mutant exhibited a lower guaiacyl (G) unit lignin content, the bm2 mutation could affect a regulatory gene involved, perhaps indirectly, in the regulation, conjugation or transport of coniferaldehyde, or the establishment of G-rich maize tissues. The pattern of gene expression in bm4 plants, characterized by the over-expression of phenylpropanoid and methylation genes, suggests that the bm4 mutation likely also affects a gene involved in the regulation of lignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALDH:

Aldehyde dehydrogenase

ABC:

ATP-binding cassette

ARF:

Auxin response factor

COMT:

Caffeic acid O-methyltransferase

CCoAOMT:

Caffeoyl-CoA O-methyltransferase

CHI:

Chalcone flavonone isomerase

CCR:

Cinnamoyl-CoA reductase

CAD:

Cinnamyl alcohol dehydrogenase

C3H:

Coumarate 3-hydroxylase

C4H:

Cinnamate 4-hydroxylase

4CL:

4-Coumarate:coenzyme A ligase

CALDH:

Coniferyl aldehyde dehydrogenase

pCA:

p-Coumaric acid

DFR:

Dihydro-flavonoid reductase

DIMBOA:

2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one

F5H:

Ferulate 5-hydroxylase

FA:

Ferulic acid

GSH:

Glutathione

G:

Guaiacyl

5-OH-G:

5-Hydroxyguaiacyl

GST:

Glutathione S-transferase

HD-Zip:

Homeodomain leucine-zipper protein

H:

Hydroxyphenyl

HCT:

Hydroxycinnamoyl-CoA transferase

OMT:

O-methyl transferase

PAL:

Phenylalanine ammonia lyase

RISC:

RNAi silencing complex

SAMS:

S-adenosyl-methionine synthetase

SAD:

Sinapyl alcohol dehydrogenase

SBP:

Herbicide safener-binding protein

S:

Syringyl

TAL:

Tyrosine ammonia lyase

UGT:

Uridine-diphosphate-glucosyltransferase

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baima S, Possenti M, Matteuci A, Wisman E, Altamura MM, Roberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655

    Article  PubMed  CAS  Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus Biologie 327:847–860

    Article  CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad USA 102:11928–11933

    Article  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    PubMed  CAS  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  PubMed  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517

    Article  PubMed  CAS  Google Scholar 

  • Cicek M, Blanchard D, Bevan DR, Esen A (2000) The aglycone specificity-determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) glucosidase (maize beta-glucosidase) and dhurrinase (sorghum beta-glucosidase). J Biol Chem 275:20002–20011

    Article  PubMed  CAS  Google Scholar 

  • Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S (2005) Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol Biol 59:753–759

    Article  PubMed  CAS  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1995) A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107:331–339

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Bohlmann J, Douglas CJ (2005) Global transcript profiling primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    Article  PubMed  CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Escamilla-Trevino LL, Chen W, Card ML, Shih MC, Cheng CL, Poulton JE (2006) Arabidopsis thaliana β-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 67:1651–1660

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12:901–915

    Article  PubMed  CAS  Google Scholar 

  • Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, Boudet AM (1992) Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48–53

    Article  CAS  Google Scholar 

  • Goffner D, Van Doorsselaere J, Yahiaoui N, Samaj J, Grima-Pettenati J, Boudet AM (1998) A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression. Plant Mol Biol 36:755–765

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–597

    Article  PubMed  CAS  Google Scholar 

  • Grand C, Parmentier P, Boudet A, Boudet AM (1985) Comparison of lignins and of enzymes involved in lignification in normal and brown midrib (bm3) mutant. Physiol Veg 23:905–911

    CAS  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Lapierre C, Barrière Y, Pichon M, Goffner D (2006) MAIZEWALL. A database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol (in press, published on line 10.1101/pp.106.0864.05)

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Hawkins SW, Boudet AM (1994) Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus gunnii. Plant Physiol 104:75–84

    PubMed  CAS  Google Scholar 

  • He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methylteransferase. Crop Sci 43:2240–2251

    Article  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vincente-Carbojosa J, Tindemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Jeffery J (1987) Characteristics of alcohol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur J Biochem 167:195–201

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Ktook M, Adrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases. Biochemistry 34:6003–6013

    Article  PubMed  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa K, Goodman MM, O’Malley DM (1999) Genetic and biochemical analysis of maize CAD. Plant and Animal Genome VII conference, poster P264, available at http://www.intl-pag.org

  • Kawaoka A, Ebinuma H (2001) Transcriptional control of lignin biosynthesis by tobacco lim protein. Phytochemistry 57:1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Ralph J, Lu F, Pilate G, Leplé JC, Pollet B, Lapierre C (2002) Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J Biol Chem 277:47412–47419

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Bartels D, Wei Y, Schnable PS, Wood AJ (2004) The ALDH gene superfamily in Arabidopsis. Trends Plant Sci 9:371–377

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Schlingensiepen S, Kotchoni S, Sunkar R, Bartels D (2005) Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene super family in Arabidopsis thaliana. Plant Mol Biol 57:315–332

    Article  PubMed  CAS  Google Scholar 

  • Klun JA, Tipton CL, Brindle TA (1967) 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J Econ Entomol 60:1529–1533

    CAS  Google Scholar 

  • Ko J-H, Prassinos C, Han KH (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169:469–478

    Article  PubMed  CAS  Google Scholar 

  • Krauskopf E, Harris PJ, Putterill J (2005) The cellulose synthase gene PrCESA10 is involved in cellulose biosynthesis in developing tracheids of the gymnosperm Pinus radiata. Gene 350:107–116

    Article  PubMed  CAS  Google Scholar 

  • Kuc J, Nelson OE, Flanagan P (1968) Degradation of abnormal lignins in the brown-midrib mutants and double mutants of maize. Phytochemistry 7:1435–1436

    Article  CAS  Google Scholar 

  • Lapierre C, Tollier MT, Monties B (1988) A new type of constitutive unit in lignins from the corn bm3 mutant. CR Acad Sci Ser 3 307:723–728

    Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1586

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  PubMed  CAS  Google Scholar 

  • Lim EK, Jackson RG, Bowles DJ (2005) Identification and characterization of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. Febs Lett 579:2802–2806

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins. J Agric Food Chem 47:1988–1992

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Zein I, Andersen JR, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146:101–108

    Article  CAS  Google Scholar 

  • Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2006) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943

    Article  Google Scholar 

  • Marita JM, Vermerris W, Ralph J, Hatfield RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Marrs A, Alfenito MR, Lloyd AM, Walbot W (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze2. Nature 375:397–400

    Article  PubMed  CAS  Google Scholar 

  • Mena MM, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ (1995) A characterization of the MADS-box gene family in maize. Plant J 8:845–854

    PubMed  CAS  Google Scholar 

  • Morrow SL, Mascia P, Self KAAltschuler M (1997) Molecular characterization of a brown-midrib3 deletion mutation in maize. Mol Breed 3:351–357

    Article  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis REF1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Pairoba CF, Walbot V (2003) Post-transcriptional regulation of expression of the Bronze2 gene of Zea mays L. Plant Mol Biol 53:75–86

    Article  PubMed  CAS  Google Scholar 

  • Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–2148

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Mol Biol 55:263–280

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory C1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    PubMed  CAS  Google Scholar 

  • Persans MW, Wiang J, Schuler MA (2001) Characterisation of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol 125: 1126–1138

    Article  PubMed  CAS  Google Scholar 

  • Pesquet E, Ranocha P, Legay S, Digonnet C, Barbier O, Pichon M, Goffner D (2005) Novel markers of xylogenesis in Zinnia are differentially regulated by auxin and cytokinin. Plant Physiol 139:1–19

    Article  CAS  Google Scholar 

  • Petroni K, Tonelli C, Paz-Ares J (2002) The MYB transcription factor family from maize to Arabidopsis. Maydica 47:213–232

    Google Scholar 

  • Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrière Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, Goffner D, Pichon M (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675–1685

    Article  PubMed  CAS  Google Scholar 

  • Provan GJ, Scobbie L, Chesson A (1997) Characterisation of lignin from CAD and OMT deficient bm mutant of maize. J Agric Food 73:133–142

    Article  CAS  Google Scholar 

  • Ralph J, Lapierre C, Lu F, Marita JM, Pilate G, Van Doorsselaere J, Boerjan W, Jouanin L (2001) NMR evidence for benzodioxane structures resulting from incorporation of 5-hydroxyconiferyl alcohol into lignins of O-methyl-transferase-deficient poplars. J Agric Food Chem 49:86–91

    Article  PubMed  CAS  Google Scholar 

  • Ragueh F, Lescure N, Roby D, Marco Y (1989) Gene expression in Nicotiana tabacum in response to compatible and incompatible isolates of Pseudomonas solanacearum. Physiol Mol Plant Pathol 35:23–33

    Article  Google Scholar 

  • Ratcliffe OJ, Reichmann JL, Zhang JZ (2000) INTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA. Plant Cell 12:315–317

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Gandehari D, Sherman BK, Yu CL (2000) Arabidopsis transcription factors, genome wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Ringli C, Keller B (1998) Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression. Plant Mol Biol 37:977–988

    Article  PubMed  CAS  Google Scholar 

  • Samson D, Legeai F, Karsenty E, Reboux S, Veyrieras JB, Just J, Barillot E (2003) GenoPlante-Info (GPI), a collection of databases and bioinformatics resources for plant genomics. Nucleic Acids Res 31:179–182

    Article  PubMed  CAS  Google Scholar 

  • Samuels A, Rensing K, Douglas CJ, Mansfield S, Dharmawardhana D, Ellis BE (2002) Cellular machinery of wood production, differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82

    Article  PubMed  CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3’-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Scott-Craig JS, Casida JE, Poduje L, Walton JD (1998) Herbicide safener-binding protein of maize. Purification, cloning, and expression of an encoding cDNA. Plant Physiol 116:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29:371–380

    Article  PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A (2005) Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  • Skibbe D, Liu F, Wen TJ, Yandeau MD, Cui X, Cao J, Simmons CR, Schnable P (2002) Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol Biol 48:751–764

    Article  PubMed  CAS  Google Scholar 

  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Article  PubMed  CAS  Google Scholar 

  • Tobias CM, Chow K (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220:678–688

    Article  PubMed  CAS  Google Scholar 

  • Vermerris W, Boon JJ (2001) Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). J Agric Food Chem 49:721–728

    Article  PubMed  CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib 3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K (2005) Transporter of secondary metabolites. Curr Opin Plant Biol 8:301–307

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Zhu Q, Dai S, Lamb C, N’Beachy R (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16:5247–5259

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1661

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (1999) IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139–2152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant of the French genomic Génoplante project. Sabine Guillaumie was supported by a PhD grant from INRA and the Région Poitou-Charentes. Alain Murigneux (Biogemma) and Alain Charcosset (INRA), managers of the maize Génoplante project, are thanked for their support in this work. Dominique Denoue, Christiane Minault, and Pascal Vernoux are thanked for their help in plant cropping and sampling. Odile Barbier and Caroline Deswarte are also thanked for their contribution to molecular biology experiments and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barrière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaumie, S., Pichon, M., Martinant, JP. et al. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226, 235–250 (2007). https://doi.org/10.1007/s00425-006-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0468-9

Keywords

Navigation