Skip to main content
Log in

Mapping chromosomal regions affecting flowering time in a spring wheat RIL population

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Flowering time is an important trait for the adaptation of wheat to its target environments. To identify chromosome regions associated with flowering time in wheat, a whole genome scan was conducted with five sets of field trial data on a recombinant inbred lines (RIL) population derived from the cross of spring wheat cultivars ‘Nanda 2419’ and ‘Wangshuibai’. The identified QTLs involved seven chromosomal regions, among which QFlt.nau-1B and QFlt.nau-2B were homoeologous to QFlt.nau-1D and QFlt.nau-2D, respectively. Nanda 2419, the earlier flowering parent, contributed early flowering alleles at five of these QTLs. QFlt.nau-1B and QFlt.nau-7B had the largest effects in all trials and were mapped to the Xwmc59.2Xbarc80 interval on chromosome 1BS and the Xgwm537Xgwm333 interval on 7BS. Most of the mapped QTL intervals were not coincident with known vernalization response or photoperiod sensitivity loci and QFlt.nau-1B seems to be an orthologue of EpsA m 1. Four pairs of loci showed significant interactions across environments in determining flowering time, all of which involved QFlt.nau-1B. These findings are of significance to wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barrett B, Bayram M, Kidwell K (2002) Identification of AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed 121:400–406. doi:10.1046/j.1439-0523.2002.732319.x

    Article  CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S et al (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733. doi:10.1007/s00122-007-0603-4

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Korzun V, Voylokov AV et al (2000) Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116:203–209. doi:10.1023/A:1004052505692

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936. doi:10.1007/s00122-002-0994-1

    Article  PubMed  Google Scholar 

  • Bullrich L, Appendino ML, Tranquilli G et al (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593. doi:10.1007/s00122-002-0982-5

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L et al (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975. doi:10.1007/s001220050978

    Article  CAS  Google Scholar 

  • Faridi NI (1988) Genetical studies of grain protein and developmental characters in wheat. PhD thesis, University of Cambridge

  • Flood RG, Halloran GM (1983) The influence of certain chromosomes of the hexaploid wheat cultivar Thatcher on time to ear emergence in Chinese Spring. Euphytica 32:121–124. doi:10.1007/BF00036871

    Article  Google Scholar 

  • Galiba GS, Quarrie A, Sutka J et al (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179. doi:10.1007/BF00222940

    Article  CAS  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY et al (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Halloran GM, Boydell CW (1967) Wheat chromosomes with genes for photoperiodic response. Can J Genet Cytol 9:394–398

    Google Scholar 

  • Hanocq E, Niarquin M, Heumez E et al (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115. doi:10.1007/s00122-004-1799-1

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O et al (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584. doi:10.1007/s00122-006-0459-z

    Article  PubMed  CAS  Google Scholar 

  • Hoogendoorn J (1985) The reciprocal F1 analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34:545–558. doi:10.1007/BF00022954

    Article  Google Scholar 

  • Hunt LA (1979) Photoperiodic responses of winter wheats from different climatic regions. Z Pflanzenzuchtung 82:70–80

    Google Scholar 

  • Iwaki K, Nagakawa K, Kato K (2001) The possible candidate of the Vrn-B1 in wheat, as revealed by monosomic analysis of Vrn gene carried by Triple Dirk (B), the former Vrn2. Wheat Info Serv 92:9–11

    Google Scholar 

  • Iwaki K, Nishida J, Yanagisawa T et al (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:571–576. doi:10.1007/s00122-001-0769-0

    Article  PubMed  CAS  Google Scholar 

  • Kuchel H, Hollamby G, Langridge P et al (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112. doi:10.1007/s00122-006-0370-7

    Article  PubMed  CAS  Google Scholar 

  • Kulwal PL, Roy JK, Balyan HS et al (2003) QTL mapping for growth and leaf characters in bread wheat. Plant Sci 164:267–277. doi:10.1016/S0168-9452(02)00409-0

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH et al (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    PubMed  CAS  Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of day length response in wheat. Heredity 41:185–191. doi:10.1038/hdy.1978.87

    Article  Google Scholar 

  • Law CN, Wolfe MS (1966) Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8:462–470

    Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear emergence time by chromosome 5A and 5D of wheat. Heredity 36:49–58. doi:10.1038/hdy.1976.5

    Article  Google Scholar 

  • Lin F, Kong ZX, Zhu HL et al (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419 x Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511. doi:10.1007/s00122-004-1772-z

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Steffenson BJ, Prom LK et al (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088. doi:10.1094/PHYTO.2000.90.10.1079

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932. doi:10.1007/s00335-001-1016-3

    Article  PubMed  CAS  Google Scholar 

  • Martinic JZ (1975) Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod. Z Pflanzenzuchtung 75:237–251

    Google Scholar 

  • Marza F, Bai GH, Carver BF et al (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698. doi:10.1007/s00122-005-0172-3

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Worland AJ (1994) Genetic control of vernalization and day length responses and earliness per se by the homoelogous group 3 chromosomes in wheat. Plant Breed 113:160–169. doi:10.1111/j.1439-0523.1994.tb00718.x

    Article  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE et al (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Plaschke J, Börner A, Xie DX et al (1993) RFLP mapping of genes affecting plant height and growth habit in rye. Theor Appl Genet 85:1049–1054. doi:10.1007/BF00215046

    Article  CAS  Google Scholar 

  • Scarth R, Law CN (1983) The location of photoperiod gene Ppd2 and an additional genetic factor for ear emergence time on chromosome 2B of wheat. Heredity 51:607–619. doi:10.1038/hdy.1983.73

    Article  Google Scholar 

  • Shindo C, Sasakuma T, Watanabe N et al (2002) Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome 45:563–569. doi:10.1139/g02-015

    Article  PubMed  CAS  Google Scholar 

  • Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63. doi:10.1038/sj.hdy.6800178

    Article  PubMed  CAS  Google Scholar 

  • Snape JW, Laurie DA, Worland AJ (1998) Understanding the genetics of abiotic stress responses in cereals and possible strategies for their amelioration. Asp Appl Biol 50:9–14

    Google Scholar 

  • Snape JW, Butterworth K, Whitechurch E et al (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190. doi:10.1023/A:1017594422176

    Article  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T et al (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494. doi:10.1139/gen-43-3-487

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H et al (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Tinker NA (1996) MQTL documentation, version 0.98, ftp://gnome.agrenv.mcgill.ca/pub/genetics/software/MQTL/mqtl.beta098/mqtl.doc

  • Tinker NA, Mather DE (1995a) Methods for QTL analysis with progeny replicated in multiple environments. JQTL: http://probe.nalusda.gov:8000/otherdocs/jqtl/1

  • Tinker NA, Mather DE (1995b) Software for simplified composite interval mapping of QTL in multiple environments. JQTL: http://probe.nalusda.gov:8000/otherdocs/jqtl/2

  • Tranquilli G, Dubcovsky J (2000) Epistatic interaction between vernalization genes Vrn-A m 1 and Vrn-A m 2 in diploid wheat. J Hered 91:304–306. doi:10.1093/jhered/91.4.304

    Article  PubMed  CAS  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F et al. (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet. doi: 10.1007/s00122-008-0764-9

  • Yan L, Fu D, Li C et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586. doi:10.1073/pnas.0607142103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was partially supported by ‘973’ program (2006CB101700) and NFSC programs (30430440, 30025030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F., Xue, S.L., Tian, D.G. et al. Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164, 769–777 (2008). https://doi.org/10.1007/s10681-008-9724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9724-3

Keywords

Navigation