Skip to main content

Advertisement

Log in

Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hydrogeochemical investigations of groundwater in Torbat-Zaveh plain have been carried out to assess the water quality for drinking and irrigation purposes. In this study, 190 groundwater samples were collected and analyzed for physicochemical parameters and major ion concentrations. The abundance of major cations and anions was in the following order: Na+ > Mg2+ > Ca2+ > K+, and Cl > \( {\mathrm{SO}}_4^{2-} \) > \( {HCO}_3^{-} \) > \( {CO}_3^{2-} \). As a result, alkaline element (Na+) exceeds alkaline earth elements (Mg2+ and Ca2+), and strong acids (Cl and \( {\mathrm{SO}}_4^{2-} \)) dominate weak acids (\( {HCO}_3^{-} \) and \( {CO}_3^{2-} \)) in majority of the groundwater samples. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na+, Mg2+, Ca2+, Cl and \( {\mathrm{SO}}_4^{2-} \). The results display that rock-weathering interactions and ion-exchange processes play important role in controlling groundwater chemistry. Saturation index values also indicate that water chemistry is significantly affected by carbonate minerals such as calcite, aragonite and dolomite. US Salinity Laboratory(USSL) and Wilcox diagrams together with permeability index values reveal that most of the groundwater samples are suitable for irrigation purpose. However, in some regions, the water samples do not indicate required irrigational quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241(1), 91–103.

    Article  CAS  Google Scholar 

  • Aghazadeh, N., & Mogaddam, A. (2011). Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental Monitoring and Assessment, 176(1–4), 183–195.

    Article  CAS  Google Scholar 

  • Alaya, M. B., Saidi, S., Zemni, T., & Zargouni, F. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Sciences, 71(8), 3387–3421.

    Article  CAS  Google Scholar 

  • APHA (1998). Standard methods for the examination of water and wastewater. Washington, USA: American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J. (1996). Multicomponent ion exchange and chromatography in natural systems. Reviews in Mineralogy and Geochemistry, 34(1), 193–227.

    CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd edn.). The Netherlands: CRC Press.

    Book  Google Scholar 

  • Appelo, C. A. J., & Willemsen, A. (1987). Geochemical calculations and observations on salt water intrusions, I. A combined geochemical/minxing cell model. Journal of Hydrology, 94(3), 313–330.

    Article  CAS  Google Scholar 

  • Bhatt, K., & Saklani, S. (1996). Hydrogeochemistry of the upper Ganges river, India. Journal of the Geological Society of India, 48(2), 171–182.

    CAS  Google Scholar 

  • Cai, J., Cao, Y., Tan, H., Wang, Y., & Luo, J. (2011). Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta. Journal of Environmental Monitoring, 13(9), 2450–2456.

    Article  CAS  Google Scholar 

  • Canter, L. W. (1996). Nitrates in groundwater. New York, USA: CRC Press.

    Google Scholar 

  • Corniello, A., & Ducci, D. (2014). Hydrogeochemical characterization of the main aquifer of the “litorale domizio-agro aversano NIPS”(Campania—southern Italy). Journal of Geochemical Exploration, 137, 1–10.

    Article  CAS  Google Scholar 

  • Del Campo, M. M., Esteller, M., Expósito, J., & Hirata, R. (2014). Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186(5), 2979–2999.

    Article  CAS  Google Scholar 

  • Desbarats, A. J. (2009). On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Applied Geochemistry, 24(5), 915–927.

    Article  CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: fundamentals and applications to contamination. Florida, USA: CRC Press.

    Google Scholar 

  • Dixon, W., & Chiswell, B. (1992). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 135(1), 259–274.

    Article  CAS  Google Scholar 

  • Djabri, L., Rouabhia, A., Hani, A., Lamouroux, C., & Pulido-Bosch, A. (2008). Origin of water salinity in a lake and coastal aquifer system. Environmental Geology, 54(3), 565–573.

    Article  CAS  Google Scholar 

  • Doneen, L. (1966). Water quality requirement for agriculture. Proc. National Sym, 213–218.

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–134.

    Article  CAS  Google Scholar 

  • Edmunds, W., Ma, J., Aeschbach-Hertig, W., Kipfer, R., & Darbyshire, D. (2006). Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Applied Geochemistry, 21(12), 2148–2170.

    Article  CAS  Google Scholar 

  • Esmaeili, A., & Moore, F. (2012). Hydrogeochemical assessment of groundwater in Isfahan province, Iran. Environmental Earth Sciences, 67(1), 107–120.

    Article  CAS  Google Scholar 

  • Fetter, C. (1994). Applied hydrogeology. New York, USA: Macmillan College Publishing Company.

  • Fetter, C. W., & Fetter, C. (2001). Applied hydrogeology (vol. 3). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Fianko, J., Osae, S., Adomako, D., & Achel, D. (2009). Relationship between land use and groundwater quality in six districts in the eastern region of Ghana. Environmental Monitoring and Assessment, 153(1–4), 139–146.

    Article  CAS  Google Scholar 

  • Ganyaglo, S. Y., Banoeng-Yakubo, B., Osae, S., Dampare, S. B., & Fianko, J. R. (2011). Water quality assessment of groundwater in some rock types in parts of the eastern region of Ghana. Environmental Earth Sciences, 62(5), 1055–1069.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Guendouz, A., Moulla, A., Edmunds, W., Zouari, K., Shand, P., & Mamou, A. (2003). Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeology Journal, 11(4), 483–495.

    Article  CAS  Google Scholar 

  • Harman, H. H. (1976). Modern factor analysis. Chicago, USA: University of Chicago Press.

    Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (vol. 2254). Department of the Interior, US Geological Survey.

  • Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water. United States geological survey water-supply paper 2254. Scientific Publishers.

  • Hounslow, A. (1995). Water quality data: analysis and interpretation. New York, USA: CRC Press.

    Google Scholar 

  • Hundal, H. (2011). Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda District of Punjab, northwest India. Environmental Earth Sciences, 64(7), 1823–1833.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environmental Monitoring and Assessment, 130(1–3), 347–364.

    Article  CAS  Google Scholar 

  • Jalali, M. (2009). Geochemistry characterization of groundwater in an agricultural area of razan, Hamadan, Iran. Environmental Geology, 56(7), 1479–1488.

    Article  CAS  Google Scholar 

  • Jankowski, J., & Acworth, R. I. (1997). Impact of debris-flow deposits on hydrogeochemical processes and the developement of dryland salinity in the Yass River Catchment, New South Wales, Australia. Hydrogeology Journal, 5(4), 71–88.

    Article  Google Scholar 

  • Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253(1), 194–210.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (vol. 4). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Karanth, K. (1987). Ground water assessment: development and management. New Delhi: Tata McGraw-Hill Education.

    Google Scholar 

  • Karanth, K. (1989). Hydrogeology. New Delhi: Tata McGraw-Hill Publishing Company.

    Google Scholar 

  • Kelley, W. P. (1951). AIkali soils. Their formation, properties and reclamation. New York: Reinhold Publishing Company.

    Google Scholar 

  • Kolsi, S. H., Bouri, S., Hachicha, W., & Dhia, H. B. (2013). Implementation and evaluation of multivariate analysis for groundwater hydrochemistry assessment in arid environments: a case study of Hajeb Elyoun–Jelma, Central Tunisia. Environmental Earth Sciences, 70(5), 2215–2224.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159(1–4), 341–351.

    Article  CAS  Google Scholar 

  • Kumar, P. S., Elango, L., & James, E. (2014). Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arabian Journal of Geosciences, 7(7), 2641–2653.

    Article  CAS  Google Scholar 

  • Liu, C. W., Jang, C. S., Chen, C. P., Lin, C. N., & Lou, K. L. (2008). Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modelling. Hydrological Processes, 22(3), 376–383.

    Article  CAS  Google Scholar 

  • Liu, F., Song, X., Yang, L., Zhang, Y., Han, D., Ma, Y., et al. (2014). Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in Subei Lake Basin, Ordos energy base, Northwestern China. Hydrology and Earth System Sciences Discussions, 11(5), 5709–5745.

    Article  Google Scholar 

  • Loizidou, M., & Kapetanios, E. (1993). Effect of leachate from landfills on underground water quality. Science of the Total Environment, 128(1), 69–81. doi:10.1016/0048-9697(93)90180-E.

    Article  CAS  Google Scholar 

  • Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, J. (1981). The use of Na/Cl ratios to trace solute sources in a semiarid zone. Water Resources Research, 17(3), 602–608.

    Article  CAS  Google Scholar 

  • Mahendra, T., & Patode, H. S. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in and around Hingoli Region, Maharashtra, India. American International Journal of Research in Humanities, Arts and Social Sciences, 6(3), 256–263.

    Google Scholar 

  • Maiti, T. (1982). The dangerous acid rain. Science Reporter, 9(6), 360–363.

    Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401–428.

    Article  CAS  Google Scholar 

  • Mohan, R., Singh, A. K., Tripathi, J. K., & Chowdhary, G. (2000). Hydrochemistry and quality assessment of groundwater in Naini industrial area, Allahabad District, Uttar Pradesh. Journal of Geological Society of India, 55(1), 77–90.

    CAS  Google Scholar 

  • Nagarajan, R., Rajmohan, N., Mahendran, U., & Senthamilkumar, S. (2010). Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environmental Monitoring and Assessment, 171(1–4), 289–308.

    Article  CAS  Google Scholar 

  • Nair, G. A., Mohamed, A., & Premkumar, K. (2005). Physico chemical parameters and correlation coefficients of ground waters of north-east Libya. Pollution Research, 24(1), 1.

    CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. (1999). User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, Colorado: U.S. Geological Survey.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168(1–4), 63–90.

    Article  CAS  Google Scholar 

  • Prasanth, S. S., Magesh, N., Jitheshlal, K., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2(3), 165–175.

    Article  CAS  Google Scholar 

  • Rajesh, R., Brindha, K., Murugan, R., & Elango, L. (2012). Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda District, Andhra Pradesh, India. Environmental Earth Sciences, 65(4), 1203–1213.

    Article  CAS  Google Scholar 

  • Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46(1), 47–61.

    CAS  Google Scholar 

  • Rajmohan, N., Al-Futaisi, A., & Al-Touqi, S. (2009). Geochemical process regulating groundwater quality in a coastal region with complex contamination sources: Barka, Sultanate of Oman. Environmental Earth Sciences, 59(2), 385–398.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), 185–206.

    Article  CAS  Google Scholar 

  • Richards, L. (1954). Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory, 160 p. (vol. 60, Agriculture Handbook). Washington, USA: US Department of Agriculture.

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 139(1), 27–48.

    Article  CAS  Google Scholar 

  • Sawyer, G., McMcarty, D., Parkin, G. (2003). Chemistry for environmental engineering and science, 5th edn. New York: McGraw Hill Education, p. 768.

  • Schoeller, H. (1967). Geochemistry of groundwater—an international guide for research and practice (Chap. 15, pp. 1–18). In: Paris: UNESCO.

  • Singh, A. K., Mondal, G., Kumar, S., Singh, T., Tewary, B., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology, 54(4), 745–758.

    Article  CAS  Google Scholar 

  • Singh, A. K., Raj, B., Tiwari, A. K., & Mahato, M. K. (2013). Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi District of Bundelkhand region, India. Environmental Earth Sciences, 70(3), 1225–1247.

    Article  CAS  Google Scholar 

  • Spears, D. (1986). Mineralogical control of the chemical evolution of groundwater (pp. 512) (Solute processes). Chichester, UK: Wiley.

    Google Scholar 

  • Stöcklin, J. (1974). Possible Ancient continental Margins in Iran (pp. 1009). (The Geology of Continental Margins). Berlin: Springer Verlag.

    Google Scholar 

  • Subba Rao, N. (2006). Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environmental Geology, 49(3), 413–429.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2007). Groundwater quality as a factor for identification of recharge zones. Environmental Geosciences, 14(2), 79–90.

    Article  Google Scholar 

  • Tay, C. K. (2012). Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Sciences, 67(7), 2077–2087.

    Article  CAS  Google Scholar 

  • Tirumalesh, K., Shivanna, K., Sriraman, A., & Tyagi, A. (2010). Assessment of quality and geochemical processes occurring in groundwaters near central air conditioning plant site in Trombay, Maharashtra, India. Environmental Monitoring and Assessment, 163(1–4), 171–184.

    Article  CAS  Google Scholar 

  • Tizro, A. T., & Voudouris, K. (2008). Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrological Processes, 22(16), 3066–3078.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology, 2nd edn. NY: John Wiley and Sons, p. 535.

  • Trivedy, R., & Goel, P. (1984). Chemical and biological methods for water pollution studies (vol. 215, ). Karad, India: Environmental Publications.

    Google Scholar 

  • Wen, X., Wu, Y., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye Basin, Northwestern China. Environmental Geology, 55(8), 1713–1724.

    Article  CAS  Google Scholar 

  • WHO (2004). Guidelines for drinking-water quality (third ed., ). Geneva, Switzerland: WHO.

    Google Scholar 

  • WHO (2006). Guidelines for drinking-water quality: first addendum to volume 1, recommendations (vol. 1, ). Geneva: World Health Organization.

    Google Scholar 

  • Wilcox, L. V. (1948). The quality of water for irrigation use. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Zhu, C., & Schwartz, F. W. (2011). Hydrogeochemical processes and controls on water quality and water management. Elements, 7(3), 169–174.

    Article  CAS  Google Scholar 

  • Zilberbrand, M., Rosenthal, E., & Shachnai, E. (2001). Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel. Journal of Contaminant Hydrology, 50(3), 175–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Torbat Heydarieh Regional Water authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J Nematollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, M.J., Ebrahimi, P., Razmara, M. et al. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ Monit Assess 188, 2 (2016). https://doi.org/10.1007/s10661-015-4968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4968-6

Keywords

Navigation