Skip to main content
Log in

Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Toluca Valley is located on the high plains of Mexico, where there are significant industrial zones and large populations. Water needs are almost exclusively met by groundwater, which has brought about intense exploitation of the aquifer and indication of some contamination. The present study investigates the effect of urbanization, related to industrialization of the region, on groundwater in the central portion of the Toluca Valley aquifer—a zone with high population density and where the largest industrial park is located. A general decline in the groundwater level has been found over the years, at a rate of as much as 2.5 m/year. The appearance of a large drawdown cone was identified, indicating changes in the direction of groundwater flow. Also identified was the presence of several ground fissures, the location of which coincided with the drawdown cone. In hydrochemical terms, the water type is sodium-magnesium bicarbonate and this characteristic has not changed over time, although it has been possible to detect the presence of larger quantities of sulfates (up to 117 mg/L) and nitrates (up to 47 mg/L) in recent years, likely associated with contamination from industrial and urban wastewater. Factor analysis made it possible to identify ions that would characterize natural processes involving the acquisition of salts (HCO3 , Na+, Mg2+, and Si), as well as anthropic activities (SO4 2−, NO3 , Cl, Ca2+, and K+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • APHA, AWWA, WEF (2005) Standard methods for the examination water and wastewater. 21th edn. APHA, AWWA, WEF. Washington, D.C.

  • Appelo, C. A. J., & Potsma, D. (2005). Geochemistry, groundwater and pollution (2nd edn). Rotterdam: Balkema.

  • Ariel y Consultores (1996) Estudio de simulación hidrodinámica y diseño óptimo de las redes de observación de los acuíferos de Calera, San Luis Potosí y Toluca (Tomo 3: Acuífero de Toluca) CNA (Comisión Nacional del Agua) México D.F.

  • Bathrellos, G. D., Skilodiumou, H. D., Kelepertsis, A., Alexakis, D., Chrisanthaki, I., & Archonti, D. (2007). Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Environmental Geology, 56, 11–18.

    Article  CAS  Google Scholar 

  • Bense, V. F., Van den Berg, E. H., & Van Balen, R. T. (2003). Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments, The Netherlands. Hydrogeology Journal, 11(3), 319–332.

    Article  Google Scholar 

  • Borja, R., & Rodríguez, R. (2004). Aquifer vulnerability changes due to faults and riverbeds in Salamanca, Guanajuato, Mexico. Geofísica Internacional, 43(4), 623–628.

    Google Scholar 

  • Boulding, J. R. (1995). Practical handbook of soil, vadose zone, and ground-water contamination. Assessment, prevention and remediation. Boca Raton: Lewis.

    Google Scholar 

  • Calderhead, A. L., Therrien, R., Rivera, A., Martel, R., & Garfias, J. (2011). Simulating pumping-induced regional land subsidence with the use of InSAR and field data in Toluca Valley, Mexico. Advances in Water Resources, 34, 83–97.

    Article  Google Scholar 

  • Carlson, M. A., Lohse, K. A., McIntosh, J. C., & McLain, J. E. T. (2011). Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin. Journal of Hydrology, 409, 196–211.

    Article  CAS  Google Scholar 

  • Carrera-Hernández, J. J., & Gaskin, S. J. (2007). The basin of México aquifer system: regional groundwater level dynamics and database development. Hydrogeology Journal, 15, 1577–1590.

    Article  Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., Huizar-Álvarez, R., & Graniel, E. (2008). Response of the interaction between groundwater and other components of the environment in México. Environmental Geology, 55, 303–319.

    Article  Google Scholar 

  • CCRECRL (Comisión Coordinadora para la Recuperación Ecológica de la Cuenca del Río Lerma). (1993). Atlas Ecológico de la Cuenca Hidrográfica del río Lerma. México: Gobierno de Estado de México.

    Google Scholar 

  • Choi, B., Yun, S., Yu, S., Lee, P., Park, S., Chae, G., et al. (2005). Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land use and pollutant recharge. Environmental Geology, 48, 979–990.

    Article  CAS  Google Scholar 

  • CONAGUA (Comisión Nacional del Agua) (2002). Determinación de la disponibilidad de agua en el Acuífero del Valle de Toluca, Subdirección General Técnica. Gerencia de Aguas Subterráneas, Subgerencia de Evaluación y Modelación Hidrogeológica. CONAGUA México D.F. Technical report.

  • CONAGUA (Comisión Nacional del Agua) (2005). Sistema Cutzamala: Agua para millones de Mexicanos. Gerencia Regional de Aguas del Valle de México y Sistema Cutzamala. CONAGUA México D.F. Technical report.

  • CONAGUA (Comisión Nacional del Agua) (2009). Actualización de la disponibilidad media anual de agua subterránea. Acuífero (1501) Valle de Toluca, Estado de México. Subdirección General Técnica. Gerencia de Aguas Subterráneas, Subgerencia de Evaluación y Ordenamiento de Acuíferos. CONAGUA México D.F. Technical report.

  • Corniello, A., Ducci, D., & Ruggieri, G. (2007). Areal identification of groundwater nitrate contamination sources in periurban areas. Journal Soils and Sediments, 7(4), 159–166.

    Article  CAS  Google Scholar 

  • Dash, J. P., Sarangi, A., & Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the National Capital territory of Delhi. Environmental Management, 45, 640–650.

    Article  CAS  Google Scholar 

  • ESRI Environmental Systems Research Institute Inc. (1999). Arc View 3.2. User’s guide.

  • Esteller, M. V., Rodríguez, R., Cardona, A., & Padilla-Sanchez, L. (2012). Evaluation of hydrochemical changes due to intensive aquifer exploitation: study cases from Mexico. Environmental Monitoring and Assessment, 184, 5725–5741.

    Google Scholar 

  • Esteller, M. V., & Andreu, J. M. (2005). Antropic effects on hydrochemical characteristics of the Valle de Toluca aquifer (central Mexico). Hydrogeology Journal, 13, 378–390.

    Article  CAS  Google Scholar 

  • Esteller, M. V., & Díaz-Delgado, C. (2002). Environmental effects of aquifer overexploitation: a case study in the Highlands of Mexico. Environmental Management, 29(2), 266–278.

    Article  Google Scholar 

  • Fonseca Ortiz, C. R., Díaz-Delgado, C., Hernández Téllez, M., & Esteller Alberich, M. V. (2013). Urban water demand in Mexico: spatial modeling based on geographic information system. Interciencia, 38(1), 17–25.

    Google Scholar 

  • Foster, S., Hirata, R., & Howard, K. (2011). Groundwater use in developing cities: policy issues arising from current trends. Hydrology Journal, 19, 271–274.

    Google Scholar 

  • GEM Gobierno del Estado de México (2005a) Plan de Desarrollo Regional del Valle de Toluca. 118pp.

  • GEM Gobierno del Estado de México (2005b). Plan Municipal de Desarrollo Urbano de Toluca. 451pp.

  • Golden Software Inc. (1997). Surfer V 6 Contouring and 3D surface mapping for scientist and engineers. User’s guide. Colorado: Golden.

    Google Scholar 

  • Gutiérrez-Carrillo, N., Palacios-Vélez, E., Peña-Díaz, S., & Palacios-Vélez, O. (2002). Stages for sustainable uses of the Queretaro Valley aquifer. Agrociencia, 36, 1–10.

    Google Scholar 

  • Healy, R. W. (2010). Estimating groundwater recharge. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Howard K.W.F. (2007) Urban groundwater: meeting the challenge. IAH Select paper Series 8. Oxford: Taylor and Francis.

  • Hudak, P., & Sanmanee, S. (2003). Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the Woodbine aquifer of North-Central Texas. Environmental monitoring and assessment., 82, 311–320.

    Article  CAS  Google Scholar 

  • IMTA (Instituto Mexicano de Tecnología del Agua). CONAGUA (Comisión Nacional del Agua) (2009). Inventario de Aprovechamientos de agua subterránea en el el acuífero del Valle de Toluca. CONAGUA, México, D.F. Technical report.

  • INEGI (Instituto Nacional Estadística Geografía e Informática) (2009) Censos económicos 2009. Resultados generales INEGI México, D.F. www.inegi.gob.mx. Accessed 4 Jan 2011.

  • INEGI (Instituto Nacional Estadística Geografía e Informática) (2004) Delimitación de las zonas metropolitanas de México SEDESOL–CONAPO–INEGI México, D.F. www.inegi.gob.mx/est/contenidos(espanol/otras_zonas_met.pdf Accessed 4 Jan 2011.

  • INEGI (Instituto Nacional Estadística Geografía e Informática). (2006). Sistema para la Consulta de Información Censal (SCINCE). México: INEGI.

    Google Scholar 

  • INEGI (Instituto Nacional Estadística Geografía e Informática) (2010) Censo Nacional de Población y Vivienda, 2010. INEGI, México. D.F. Disponible en http://www.inegi.org.mx/Sistemas/temasV2/Default.aspx?s=est&c=17484. Accessed 4 Jan 2011.

  • Jeong, C. H. (2001). Effect on land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253, 194–210.

    Article  CAS  Google Scholar 

  • Jiao, J. J., Leung, C., & Ding, G. (2008). Changes to the groundwater system, from 1888 to present in a highly-urbanized coastal area in Hong Kong, China. Hydrogeology Journal, 16, 1527–1539.

    Article  Google Scholar 

  • Jiménez, B., Torregrosa, M. L., & Aboites, L. (2010). El agua en México: cauces y encauces. México: Academia Mexicana de Ciencias.

    Google Scholar 

  • Jin, Z., Chen, Y., Wang, F., & Ogura, N. (2003). Detection of nitrate source in urban groundwater by isotopic and chemical indicators, Hsangzhou City, China. Environmental Geology, 45, 1017–1024.

    Article  CAS  Google Scholar 

  • Kontogianni, V., Pytharouli, S., & Stiros, S. (2007). Groundwater subsidence, Quaternary faults and vulnerability of utilities and transportation network in Thessaly, Greece. Environmental Geology, 52, 1085–1095.

    Article  Google Scholar 

  • Lerner, D. N. (2002). Identifying and quantifying urban recharge: a review. Hydrogeology Journal, 10, 143–152.

    Article  Google Scholar 

  • Lesser y asociados, S.A. (1984) Actividades geohidrológicas en el Alto Lerma. Informe para la Dirección General de Construcción y Operación Hidráulica. Contrato 4–33–1–677. México.

  • Leung, C., Jiao, J. J., Malpas, J., Chan, W., & Wang, Y. (2004). Factors affecting the groundwater chemistry in highly urbanized coastal area in Hong Kong: an example from the Mid-Levels area. Environmental Geology, 48, 480–495.

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of the factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Mejía, J. A., Rodríguez, R., Armienta, A., Mata, E., & Fiorucci, A. (2007a). Aquifer vulnerability zoning, an indicator of atmospheric pollutants input? Vanadium in the Salamanca aquifer, Mexico. Water, Air & Soil Pollution, 185(1–4), 95–100.

    Article  CAS  Google Scholar 

  • Mejía, L., Murillo S., & Reyes J. (2007b). Plan de manejo del Valle de Toluca. Cuenca y Acuífero. Problemática y Perspectivas. CONAGUA (Comisión Nacional del Agua), Subdirección General de Programación; Dirección Local Estado de México.

  • Morris, B. L., Seddique, A. A., & Ahmed, K. M. (2003). Response of the Dupi Tila aquifer to intensive pumping in Dhaka, Bangladesh. Hydrogeology Journal, 11, 496–503.

    Article  Google Scholar 

  • Naik, P. K., Tambe, J. A., Dehury, B. N., & Tiwari, A. N. (2008). Impact of urbanization on the groundwater regime in a fast growing city in central India. Environmental Monitoring Assessment, 146, 339–373.

    Article  CAS  Google Scholar 

  • Ramos-Leal, J. A., Noyola-Medrano, C., & Tapia-Silva, F. O. (2010). Aquifer vulnerability and groundwater quality in mega cities: case of the Mexico Basin. Environmental Earth Sciences, 61, 1309–1320.

    Article  Google Scholar 

  • Rudolph, D. L., Sultan, R., Garfias, J., & McLaren, R. G. (2005). Significance of enhanced infiltration due to groundwater extraction on the disappearance of a headwater lagoon system: Toluca Basin, Mexico. Hydrogeology Journal, 14, 115–130.

    Article  CAS  Google Scholar 

  • Secretaría de Industria y Comercio (1963) VII Censo General de Población 1960. Dirección General de Estadística. México D.F.

  • Vázquez-Suñé, E. (2003) Urban groundwater. Barcelona City case study. Ph.D. thesis. Universidad Politécnica de Cataluña. http://www.tdx.cat/bitstream/handle/10803/6232/01Evs01de01.pdf;jsessionid. Accessed 22 Jan 2011

  • Vázquez-Suñé, E., Carrera, J., Tubau, I., Sanchez-Vilá, X., & Soler, A. (2010). An approach to identify urban groundwater recharge. Hydrology and Earth System Science, 14, 2085–2097.

    Article  Google Scholar 

  • Vázquez-Suñé, E., Sánchez-Vila, X., & Carrera, J. (2005). Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeology Journal, 13(3), 522–533.

    Google Scholar 

  • Waterloo Hydrogeologic (1999). User´s guide of AquaChem (v 3.7). Waterloo, Ontario, Canada: Waterloo Hydrogeologic.

  • Wolf, L., Eiswirth, M., & Hötzl, H. (2006). Assessing sewer-groundwater interaction at the city scale based on individual sewer defects and maker species distributions. Environmental Geology, 49, 849–857.

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Universidad Autonoma del Estado de México (Project 2600/2008U) for providing financial support. Particular thanks are given to Comision Nacional del Agua (CONAGUA) for their helpful technical support. The work by M.A. Martín del Campo conducted for this research was carried out with the financial support of Consejo Nacional de Investigación y Ciencia (CONACyT), for the period of the research visit to the Universidade de São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Esteller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín del Campo, M.A., Esteller, M.V., Expósito, J.L. et al. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ Monit Assess 186, 2979–2999 (2014). https://doi.org/10.1007/s10661-013-3595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3595-3

Keywords

Navigation