Skip to main content

Advertisement

Log in

Evaluation of salicylic acid (SA) signaling pathways and molecular markers in Trichoderma-treated plants under salinity and Fusarium stresses. A Review

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plants are exposed to a range of biotic and abiotic stresses, including fungal infections and soil salinity. These stresses have negative impacts on plant growth and productivity, resulting in reduced yields and economic losses. To mitigate these effects, researchers have explored the use of biocontrol agents, such as Trichoderma, which can enhance plant growth and protect plants against various stresses. Salicylic acid (SA) is a key signaling molecule in plant defense against pathogens and plays a crucial role in activating the plant defense response. SA signaling pathways are known to be involved in the regulation of pathogenesis-related (PR) proteins, reactive oxygen species (ROS) production, and the synthesis of phytohormones, such as jasmonic acid (JA) and ethylene (ET). In this review, we evaluated the effect of Trichoderma treatment on SA signaling pathways and molecular markers in plants under salinity and Fusarium stresses. The findings showed that Trichoderma-treated plants exhibited enhanced SA signaling, as evidenced by the upregulation of SA-related genes. This was associated with improved disease resistance, as Trichoderma-treated plants showed lower disease severity and increased survival rates when exposed to Fusarium infection. Moreover, Trichoderma-treated plants also exhibited increased tolerance to salinity stress, as evidenced by improved physiological parameters, such as chlorophyll content and root growth. Molecular markers such as PR proteins and ROS-scavenging enzymes were upregulated in Trichoderma-treated plants, further indicating the activation of plant defense mechanisms. Overall, these findings suggest that Trichoderma-induced SA signaling and molecular markers contribute to the enhanced stress tolerance in plants, highlighting the potential of Trichoderma as a biocontrol agent for sustainable agriculture. Further studies are needed to elucidate the mechanisms underlying these effects and to optimize the use of Trichoderma in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

Abbreviations

SA:

Salicylic acid

JA:

Jasmonic acid

SAR:

Systemic acquired resistance

ISR:

Induced systemic resistance

ROS:

Reactive oxygen species

FHB:

Fusarium Head blight

ICS:

Isochorismate synthase

PAL:

Phenylalanine ammonia lyase

PRs:

Pathogenesis-related genes

ROS:

Reactive oxygen species

LTPs:

Lipid transfer proteins

DIR1:

Defective in induced resistance

PAD4:

Phytoalexin deficient 4

EDS1:

Enhanced disease susceptibility 1

SABP2:

SA-binding protein

DTH9:

Detachment 9

NPR1:

Non-expresser of pr genes1/ noninducible immunity1

EPS1:

Enhanced pseudomonas susceptibility1

EDS5:

Enhanced disease susceptibility 5

PBS3:

AvrPphB susceptible3

C4H:

Cinnamate-4-hydroxylase

4CL:

4-Coumarate:CoA ligase

CHS:

Chalcone synthase

STS:

Stilbene synthase

CCR:

Cinnamoyl-CoA reductase

CAD:

Cinnamyl alcohol dehydrogenase

HCT:

Hydroxycinnamoyl Co A shikimate hydroxycinnamoyl transferase

References

  • Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad, S., Cui, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., Su, W., Javed, T., El-Serehy, H. A., & Jia, Z. (2021). Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. Journal of Plant Growth Regulation, 40, 1270–1283.

    Article  CAS  Google Scholar 

  • Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., & Yadav, P. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212, 29–37.

    Article  PubMed  Google Scholar 

  • Almeida-Silva, F., & Venancio, T. M. (2022). Pathogenesis-related protein 1 (PR-1) genes in soybean: Genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Gene, 809, 146013.

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Ramírez, A., Poveda, J., Martín, I., Hermosa, R., Monte, E., & Nicolás, C. (2014). Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Molecular Plant Pathology, 15, 823–831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansary, J., Forbes-Hernández, T. Y., Gil, E., Cianciosi, D., Zhang, J., Elexpuru-Zabaleta, M., Simal-Gandara, J., Giampieri, F., & Battino, M. (2020). Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants, 9, 619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon, C. W., Yates, I. E., Hinton, D. M., & Meredith, F. (2001). Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives, 109, 325–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balal, R. M., Shahid, M. A., Khan, N., Sarkhosh, A., Zubair, M., Rasool, A., Mattson, N., Gomez, C., Bukhari, M. A., & Waleed, M. (2022). Morphological, physiological, and biochemical modulations in crops under salt stress. In Building climate resilience in agriculture (pp. 195–210). Springer.

  • Barros, J., & Dixon, R. A. (2020). Plant phenylalanine/tyrosine ammonia-lyases. Trends in Plant Science, 25, 66–79.

    Article  CAS  PubMed  Google Scholar 

  • Behrani, G., Syed, R., Abro, M., Jiskani, M., & Khanzada, M. (2015). Pathogenicity and chemical control of basal rot of onion caused by Fusarium oxysporum f. sp. cepae. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 31, 60–70.

    Google Scholar 

  • Bernal-Vicente, A., Ros, M., & Pascual, J. A. (2009). Increased effectiveness of the Trichoderma harzianum isolate T-78 against Fusarium wilt on melon plants under nursery conditions. Journal of the Science of Food and Agriculture, 89, 827–833.

    Article  CAS  Google Scholar 

  • Birch, P. R., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Security, 4, 477–508.

    Article  Google Scholar 

  • Blume, Y. B., Krasylenko, Y. A., & Yemets, A. I. (2017). The role of the plant cytoskeleton in phytohormone signaling under abiotic and biotic stresses. In G. K. Pandey (Ed.), Mechanism of Plant Hormone Signaling under Stress (pp. 127–185). Wiley.

  • Boamah, S., Zhang, S., Xu, B., Li, T., Calderón-Urrea, A., & Tiika, R. J. (2022). Trichoderma longibrachiatum TG1 increases endogenous salicylic acid content and antioxidants activity in wheat seedlings under salinity stress. PeerJ, 10, e12923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boamah, S., Zhang, S., Xu, B., Li, T., & Calderón-Urrea, A. (2021a). Trichoderma longibrachiatum (TG1) Enhances wheat seedlings tolerance to salt stress and resistance to Fusarium pseudograminearum. Frontiers in Plant Science, 12.

  • Boamah, S., Zhang, S., Xu, B., Tong, L., Inayat, R., & Calderón-Urrea, A. (2021b). The role of Trichoderma species in plants response to salt stress. Asian Journal of Research in Crop Science, 28–43.

  • Brotman, Y., Briff, E., Viterbo, A., & Chet, I. (2008). Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiology, 147, 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddenhagen, I. (2007). Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of Tropical Race 4'to better manage banana production. In III International symposium on banana: ISHS-ProMusa symposium on recent advances in banana crop protection for sustainable (vol. 828, pp. 193–204).

  • Chauhan, P., Verma, P., Pandey, S., Bhattacharya, A., Tripathi, A., Giri, V. P., & Mishra, A. (2021). Endophytic microbial interaction with legume crop for developing resistance against nutrient stress. In Microbes in land use change management (pp. 363–387). Elsevier.

  • Chen, S.-C., Ren, J.-J., Zhao, H.-J., Wang, X.-L., Wang, T.-H., Jin, S.-D., Wang, Z.-H., Li, C.-Y., Liu, A.-R., & Lin, X.-M. (2019). Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots. Phytopathology, 109, 972–982.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H. W., Tian, M., Song, F., Venereau, E., Preti, A., Park, S.-W., Hamilton, K., Swapna, G., Manohar, M., & Moreau, M. (2015). Aspirin’s active metabolite salicylic acid targets high mobility group box 1 to modulate inflammatory responses. Molecular Medicine, 21, 526–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, D. K., Prakash, A., & Johri, B. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, S., Panda, P., Sahoo, L., & Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior, 8, e23681.

    Article  Google Scholar 

  • Cuong, D. M., Kwon, S. J., Nguyen, B. V., Chun, S. W., Kim, J. K., & Park, S. U. (2020). Effect of salinity stress on phenylpropanoid genes expression and related gene expression in wheat sprout. Agronomy, 10(3), 390.

  • Daami-Remadi, M., Souissi, A., Oun, H. B., Mansour, M., & Nasraoui, B. (2009). Salinity effects on Fusarium wilt severity and tomato growth. Dynamic Soil, Dynamic Plant, 3, 61–69.

    Google Scholar 

  • Deckers, S. (2013). Modeling and biophysical characterisation of the primary gushing mechanism in beer. Interaction between gaseous carbon dioxide and Class II hydrophobins.

  • Dempsey, D. M. A., Shah, J., & Klessig, D. F. (1999). Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences, 18, 547–575.

    Article  CAS  Google Scholar 

  • Dempsey, D.M.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists 9.

  • Di, X., Takken, F. L., & Tintor, N. (2016). How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Frontiers in Plant Science, 7, 170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, P., & Ding, Y. (2020). Stories of salicylic acid: A plant defense hormone. Trends in Plant Science, 25, 549–565.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence a genomics perspective. Molecular Plant Pathology, 3, 371–390.

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman, M., & Prasad, P. (2013). Effects of salinity on ion transport, water relations and oxidative damage. In Ecophysiology and responses of plants under salt stress (pp. 89–114). Springer.

  • Dong, F., Fu, X., Watanabe, N., Su, X., & Yang, Z. (2016). Recent advances in the emission and functions of plant vegetative volatiles. Molecules, 21, 124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doohan, F., Brennan, J., & Cooke, B. (2003). Influence of climatic factors on Fusarium species pathogenic to cereals. In Epidemiology of mycotoxin producing fungi (pp. 755–768). Springer.

  • Ekinci, D., Şentürk, M., & Küfrevioğlu, Ö. İ. (2011). Salicylic acid derivatives: Synthesis, features and usage as therapeutic tools. Expert Opinion on Therapeutic Patents, 21, 1831–1841.

    Article  CAS  PubMed  Google Scholar 

  • Ekwomadu, T. I., Akinola, S. A., & Mwanza, M. (2021). Fusarium mycotoxins, their metabolites (Free, emerging, and masked), food safety concerns, and health impacts. International Journal of Environmental Research and Public Health, 18, 11741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Komy, M. H., Al-Qahtani, R. M., Ibrahim, Y. E., Almasrahi, A. A., & Al-Saleh, M. A. (2022). Soil application of Trichoderma asperellum strains significantly improves Fusarium root and stem rot disease management and promotes growth in cucumbers in semi-arid regions. European Journal of Plant Pathology, 162, 637–653.

    Article  CAS  Google Scholar 

  • Etesami, H., & Beattie, G. A. (2018). Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 9, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami, H., & Glick, B. R. (2020). Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 178, 104124.

    Article  CAS  Google Scholar 

  • Fakhar, M., Jabbar, I., & Sabri, A. N. (2017). Effect of nickel on biofilm formation of Halophilic bacteria isolated from Achyranthus aspera from salt range Pakistan. Punjab University Journal of Zoology, 32, 117–128.

    Google Scholar 

  • Feduraev, P., Skrypnik, L., Riabova, A., Pungin, A., Tokupova, E., Maslennikov, P., & Chupakhina, G. (2020). Phenylalanine and tyrosine as exogenous precursors of wheat (Triticum aestivum L.) secondary metabolism through PAL-associated pathways. Plants, 9, 476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq transcriptome response of flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7, 1766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallou, A., Cranenbrouck, S., & Declerck, S. (2009). Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. European Journal of Plant Pathology, 124, 219–230.

    Article  Google Scholar 

  • Galvano, F., Ritieni, A., Piva, G., & Pietri, A. (2005). Mycotoxins in the human food chain. The Mycotoxin Blue Book, 1, 187–224.

    Google Scholar 

  • Gálvez, L., & Palmero, D. (2022). Fusarium dry rot of garlic bulbs caused by Fusarium proliferatum: A review. Horticulturae, 8, 628.

    Article  Google Scholar 

  • Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., & Métraux, J.-P. (2008). Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology, 147, 1279–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatch, E. (2013). Management of Fusarium wilt in spinach seed crops in the maritime Pacific Northwest USA. Washington State University.

    Google Scholar 

  • Gautam, J. K., Giri, M. K., Singh, D., Chattopadhyay, S., & Nandi, A. K. (2021). MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. Physiologia Plantarum, 173, 2248–2261.

    Article  CAS  PubMed  Google Scholar 

  • Gimeno, A. (2020). New tools to advance the biological control of fusarium graminearum by the antagonist clonostachys rosea. University of Zurich.

    Google Scholar 

  • Haider, F. U., Cheema, S. A., Ashraf, I., & Shahzad, B. (2022a). Role of salicylic acid on postharvest physiology of plants. In Managing plant stress using salicylic acid: physiological and molecular aspects (pp. 111–137).

  • Haider, F. U., Farooq, M., Naveed, M., Cheema, S. A., Ul Ain, N., Salim, M. A., Liqun, C., & Mustafa, A. (2022b). Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. Frontiers in Plant Science, 13.

  • Hao, Q., Wang, W., Han, X., Wu, J., Lyu, B., Chen, F., Caplan, A., Li, C., Wu, J., & Wang, W. (2018). Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. Molecular Plant Pathology, 19, 1995–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat, S., Ali, B., and Ahmad, A. (2007). "Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone. Springer), 1–14.

  • Hong, J. K., & Hwang, B. K. (2005). Induction of enhanced disease resistance and oxidative stress tolerance by overexpression of pepper basic PR-1 gene in Arabidopsis. Physiologia Plantarum, 124, 267–277.

    Article  CAS  Google Scholar 

  • Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290–300.

    Article  Google Scholar 

  • Husen, A., Iqbal, M., Sohrab, S. S., & Ansari, M. K. A. (2018). Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Journal Agriculture Food Security, 7, 44.

    Article  Google Scholar 

  • Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., & Wesemael, W. M. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalman, B., Abraham, D., Graph, S., Perl-Treves, R., Meller Harel, Y., & Degani, O. (2020). Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in Northeastern Israel. Biology, 9, 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., & Kumar, P. (2020). Systemic acquired resistance (SAR) and induced systemic resistance (ISR): Role and mechanism of action against phytopathogens. In Fungal biotechnology and bioengineering (pp. 457–470). Springer.

  • Kang, G., Li, G., & Guo, T. (2014). Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiologiae Plantarum, 36, 2287–2297.

    Article  CAS  Google Scholar 

  • Khalil, M., & Shimaa, H. (2020). Use of biological control and bio-fertilization against Fusarium wilt disease and its effect on growth characteristics and tomato productivity. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology), 10, 71–84.

    Article  Google Scholar 

  • Lal, N., & Datta, J. (2012). Progress and perspectives in characterization of genetic diversity in plant pathogenic Fusarium. Plant Archives, 12, 557–568.

    Google Scholar 

  • Le, D., Audenaert, K., & Haesaert, G. (2021). Fusarium basal rot: Profile of an increasingly important disease in Allium spp. Tropical Plant Pathology, 46, 241–253.

    Article  Google Scholar 

  • Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11, 338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Atanasov, K. E., Arafaty, N., Murillo, E., Tiburcio, A. F., Zeier, J., & Alcázar, R. (2020). Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana. Plant, Cell & Environment, 43, 2755–2768.

    Article  CAS  Google Scholar 

  • Lu, L., Yang, Y., Zhang, H., Sun, D., Li, Z., Guo, Q., Wang, C., & Qiao, L. (2021). Oligogalacturonide-accelerated healing of mechanical wounding in tomato fruit requires calcium-dependent systemic acquired resistance. Food Chemistry, 337, 127992.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, S., Mallick, N., & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 47, 642–649.

    Article  CAS  PubMed  Google Scholar 

  • Manzar, N., Singh, Y., Kashyap, A. S., Sahu, P. K., Rajawat, M. V. S., Bhowmik, A., Sharma, P. K., & Saxena, A. K. (2021). Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and hill regions of India. Biological Control, 152, 104474.

    Article  CAS  Google Scholar 

  • Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V., & Vannacci, G. (2012). Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology, 158, 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco, J. S., Van Der Drift, K. M., Olsson, P. E., Thomas-Oates, J. E., Van Loon, L. C., & Bakker, P. A. (2001). Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. Journal of Bacteriology, 183, 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651.

    Article  CAS  PubMed  Google Scholar 

  • Naik, P. M., & Al-Khayri, J. M. (2016). Abiotic and biotic elicitors-role in secondary metabolites production through in vitro culture of medicinal plants. In A. K. Shanker & C. Shanker (Eds.), Abiotic and biotic stress in plants—recent advances and future perspectives (pp. 247–277). InTech.

  • Ndiate, N. I., Zaman, Q. U., Francis, I. N., Dada, O. A., Rehman, A., Asif, M., Goffner, D., Kane, A., Liqun, C., & Haider, F. U. (2022). Soil amendment with arbuscular mycorrhizal fungi and biochar improves salinity tolerance, growth, and lipid metabolism of common wheat (Triticum aestivum L.). Sustainability, 14, 3210.

    Article  CAS  Google Scholar 

  • O’donnell, K., Ward, T. J., Robert, V. A., Crous, P. W., Geiser, D. M., & Kang, S. (2015). DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica, 43, 583–595.

    Article  Google Scholar 

  • Olanya, O., Ojiambo, P., Nyankanga, R., Honeycutt, C., & Kirk, W. (2009). Recent developments in managing tuber blight of potato (Solanum tuberosum) caused by Phytophthora infestans. Canadian Journal of Plant Pathology, 31, 280–289.

    Article  Google Scholar 

  • Pietrowska-Borek, M., Wojdyła-Mamoń, A., Dobrogojski, J., Młynarska-Cieślak, A., Baranowski, M. R., Dąbrowski, J. M., Kowalska, J., Jemielity, J., Borek, S., & Pedreño, M. A. (2020). Purine and pyrimidine dinucleoside polyphosphates differentially affect the phenylpropanoid pathway in Vitis vinifera L. cv. Monastrell suspension cultured cells. Plant Physiology and Biochemistry, 147, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  CAS  PubMed  Google Scholar 

  • Rojo, F. G., Reynoso, M. M., Ferez, M., Chulze, S. N., & Torres, A. M. (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection, 26, 549–555.

    Article  Google Scholar 

  • Saladino, D. (2021). Eating to extinction: The world’s rarest foods and why we need to save them. Random House.

    Google Scholar 

  • Shoaib, A., Meraj, S., Khan, K. A., & Javaid, M. A. (2018). Influence of salinity and Fusarium oxysporum as the stress factors on morpho-physiological and yield attributes in onion. Physiology and Molecular Biology of Plants, 24, 1093–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh, M., & Harman, G. E. (2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiology, 147, 2147–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha, R. (2019). Evaluation of Trichoderma harzianum as a biocontrol agent on fusarium wilt of tomato grown in eastern Nepal. In Partial fulfillment of the requirements for the award of degree of master of science in microbiology. Department of Microbiology, Central Campus of Technology, Tribhuvan University.

  • Shuping, D., & Eloff, J. N. (2017). The use of plants to protect plants and food against fungal pathogens: A review. African Journal of Traditional, Complementary and Alternative Medicines, 14, 120–127.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Dwivedi, P. (2018). Salicylic acid and Trichoderma ameliorate salt stress responses in pea (Pisum sativum L.). International Journal of Agriculture, Environment and Biotechnology, 11, 387–395.

    Google Scholar 

  • Tseng, Y.-H., Rouina, H., Groten, K., Rajani, P., Furch, A. C., Reichelt, M., Baldwin, I. T., Nataraja, K. N., Uma Shaanker, R., & Oelmüller, R. (2020). An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Frontiers in Plant Science, 11, 573670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12, 341–354.

    Article  CAS  PubMed  Google Scholar 

  • Valifard, M., Mohsenzadeh, S., Niazi, A., & Moghadam, A. (2015). Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in’Salvia’species. Australian Journal of Crop Science, 9, 656–665.

    CAS  Google Scholar 

  • Valverde-Bogantes, E., Bianchini, A., Herr, J. R., Rose, D. J., Wegulo, S. N., & Hallen-Adams, H. E. (2020). Recent population changes of Fusarium head blight pathogens: Drivers and implications. Canadian Journal of Plant Pathology, 42, 315–329.

    Article  Google Scholar 

  • Van Loon, L. (2007). Plant responses to plant growth-promoting rhizobacteria. In P. A. H. M. Bakker, J. M. Raaijmakers, G. Bloemberg, M. Höfte, P. Lemanceau, & B. M. Cooke (Eds.), New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243–254). Springer Netherlands.

    Chapter  Google Scholar 

  • Velázquez-Robledo, R., Contreras-Cornejo, H., Macias-Rodriguez, L., Hernández-Morales, A., Aguirre, J., Casas-Flores, S., López-Bucio, J., & Herrera-Estrella, A. (2011). Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Molecular Plant-Microbe Interactions, 24, 1459–1471.

    Article  PubMed  Google Scholar 

  • Voigt, K. (2013). 12 Management of Fusarium diseases. Agricultural Applications, 11, 217.

    Google Scholar 

  • Vos, C. M., De Cremer, K., Cammue, B. P., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16, 400–412.

    Article  PubMed  Google Scholar 

  • Wang, B. (2004). "Australian native cottons as sources of resistance and new pathotypes of Fusarium wilt". CSIRO Plant Industry).

  • Worku, M., & Sahe, S. (2018). Review on disease management practice of tomato wilt caused Fusarium oxysporum in case of Ethiopia. J Plant Pathol Microbiol, 9, 2.

    Article  Google Scholar 

  • Wrather, A., & Koenning, S. (2009). Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Progress, 10, 24.

    Article  Google Scholar 

  • Wrather, J., Anderson, T., Arsyad, D., Tan, Y., Ploper, L. D., Porta-Puglia, A., Ram, H., & Yorinori, J. (2001). Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Canadian Journal of Plant Pathology, 23, 115–121.

    Article  Google Scholar 

  • Xing, F., Li, Z., Sun, A., & Xing, D. (2013). Reactive oxygen species promote chloroplast dysfunction and salicylic acid accumulation in fumonisin B1-induced cell death. FEBS Letters, 587, 2164–2172.

    Article  CAS  PubMed  Google Scholar 

  • Yli-Mattila, T. (2010). Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. Journal of Plant Pathology, 7–18.

  • Yuan, M., Huang, Y., Jia, Z., Ge, W., Zhang, L., Zhao, Q., Song, S., & Huang, Y. (2019). Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition. Genes & Genomics, 41, 689–699.

    Article  CAS  Google Scholar 

  • Zehra, A., Meena, M., Dubey, M. K., Aamir, M., & Upadhyay, R. (2017). Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Botanical Studies, 58, 1–14.

    Article  CAS  Google Scholar 

  • Zhang, C., Wang, W., Hu, Y., Peng, Z., Ren, S., Xue, M., Liu, Z., Hou, J., Xing, M., & Liu, T. (2022a). A novel salt-tolerant strain Trichoderma atroviride HN082102. 1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum. BMC Microbiology, 22, 1–14.

    Article  Google Scholar 

  • Zhang, Y., Xiao, J., Yang, K., Wang, Y., Tian, Y., & Liang, Z. (2022b). Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt. PLoS ONE, 17, e0272702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to show sincere gratitude to the research team members of Plant Protection, Gansu Agricultural University

Funding

This study was funded by Fuxi Outstanding Talent Cultivation Program, Gansu Agricultural University (Project Gaufx-03J03); National Natural Science Foundation of China (project 31860526); and Gansu Provincial Science Fund for Distinguished Young Scholars (project 18JR3RA161).

Author information

Authors and Affiliations

Authors

Contributions

Boamah S., Ojangba T., conceived and wrote the manuscript, Zhang S., Xu B., revised and supervised the write-up, Zhu N., Osei R., Tiika R., Boakye AT., Khurshid A., Inayat R., Effah Z., and Essel E., edited the write-up. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shuwu Zhang or Bingliang Xu.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boamah, S., Ojangba, T., Zhang, S. et al. Evaluation of salicylic acid (SA) signaling pathways and molecular markers in Trichoderma-treated plants under salinity and Fusarium stresses. A Review. Eur J Plant Pathol 166, 259–274 (2023). https://doi.org/10.1007/s10658-023-02660-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02660-9

Keywords

Navigation