Skip to main content

Advertisement

Log in

Soil application of Trichoderma asperellum strains significantly improves Fusarium root and stem rot disease management and promotes growth in cucumbers in semi-arid regions

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To improve biocontrol approaches in Saudi Arabia, it is necessary to collect and screen suitable native Trichoderma strains. In this study, the biocontrol potential of 20 native Trichoderma asperellum strains was assessed using dual culture and antibiosis assays against Fusarium oxysporum f. sp. radicis-cucumerinum (Forc), the causal agent of Fusarium root and stem rot (FRSR) in cucumber plants. We identified two T. asperellum strains (TAS23 and TAS27) with the highest in vitro antagonistic capacity against Forc. The compatibility between the two strains was identified in vitro. We found that treating cucumber plants with these antagonistic strains separately was effective in delaying the occurrence of FRSR in greenhouse trials. However, treatment with strain mixture TASMix (TAS23 + TAS27) had a synergistic effect and resulted in the highest reduction (P < 0.05) in disease incidence and severity index by 51% and 59.6%, respectively. The decrease in growth due to pathogen-induced stress was significantly less in the TASMix-treated plants than in those treated with individual strains. Real-time PCR assay revealed that the reduction of FRSR in plants treated with TASMix was accompanied by a significant reduction in Forc populations in cucumber stems and rhizosphere. The results of this study suggest that TASMix-controlled FRSR is achieved by reducing reactive oxygen species accumulation, limiting cellular damage, and increasing the activities of antioxidant enzymes in cucumber roots. In summary, a synergistic approach with the application of a mixture of native Trichoderma strains seems promising for managing FRSR in cucumber under organic farming conditions in semi-arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abo-Elyousr, K. A., Hashem, M., & Ali, E. H. (2009). Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Protection, 28, 295–301.

    Article  CAS  Google Scholar 

  • Aleandri, M. P., Chilosi, G., Bruni, N., Tomassini, A., Vettraino, A. M., & Vannini, A. (2015). Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection, 67, 269–278.

    Article  Google Scholar 

  • Bell, D. K., Wells, H. D., & Markham, C. R. (1982). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72, 379–382.

    Article  Google Scholar 

  • Benítez, T., Rincón, A. M., Limón, M. C., & Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry, 72, 1151–1154.

    Article  Google Scholar 

  • Campbell, M. M., & Sederoff, R. R. (1996). Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiology, 110, 3.

    Article  CAS  Google Scholar 

  • Chemeltorit, P. P., Mutaqin, K. H., & Widodo, W. (2017). Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10–86: A synergistic chili pepper seed treatment for Phytophthora capsici infested soil. European Journal of Plant Pathology, 147, 157–166.

    Article  Google Scholar 

  • Chen, S. C., Ren, J. J., Zhao, H. J., Wang, X. L., Wang, T. H., Jin, S. D., & Ahammed, G. J. (2019). Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots. Phytopathology, 109, 972–982.

    Article  CAS  Google Scholar 

  • Chien, Y. C., & Huang, C. H. (2020). Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. European Journal of Plant Pathology, 156, 995–1003.

    Article  CAS  Google Scholar 

  • Cong, Y., Fan, H., Ma, Q., Lu, Y., Xu, L., Zhang, P., & Chen, K. (2019). Mixed culture fermentation between Rhizopus nigricans and Trichoderma pseudokoningii to control cucumber Fusarium wilt. Crop Protection, 124, 104857.‏

  • Dallagnol, L. J., Rodrigues, F. A., DaMatta, F. M., Mielli, M. V., & Pereira, S. C. (2011). Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice–Bipolaris oryzae interaction. Phytopathology, 101, 92–104.

    Article  Google Scholar 

  • De Gara, L., PintoMC, De., & Tommasi, F. (2003). The antioxidant system Visà- Vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  Google Scholar 

  • El_Komy, M. H., Hassouna, M. G., Abou-Taleb, E. M., Al-Sarar, A. S., & Abobakr, Y. (2020). A mixture of Azotobacter, Azospirillum, and Klebsiella strains improves root-rot disease complex management and promotes growth in sunflowers in calcareous soil. European Journal of Plant Pathology, 156, 713–726.

  • El_Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. The Plant Pathology Journal, 31, 50–60.

  • El_komy, M. H., Al-Qahtani, R. M., Widyawan, A., Molan, Y., & Almasrahi, A. (2021). First Report of Fusarium Root and Stem Rot Caused by Fusarium oxysporum f. sp. radicis-cucumerinum on Greenhouse Cucumbers in Saudi Arabia. Plant Disease, https://doi.org/10.1094/PDIS-01-21-0122-PDN.

  • El_Komy, M. H., Saleh, A. A., Ibrahim, Y. E., Hamad, Y. K., & Molan, Y. Y. (2016). Trichoderma asperellum strains confer tomato protection and induce its defense-related genes against the Fusarium wilt pathogen. Tropical Plant Pathology, 41, 277–287.

  • Esechie, H. (1994). Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172, 194–199.

  • Filion, M., St-Arnaud, M., & Jabaji-Hare, S. H. (2003). Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology, 93, 229–235.

    Article  CAS  Google Scholar 

  • Fortunato, A. A., Rodrigues, F. Á., & do Nascimento, K. J. T. (2012). Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology, 102, 957–966.

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. Wiley, New York. https://doi.org/10.1017/S0014479700014496

    Article  Google Scholar 

  • Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., & Dinoor, A. (2002). Improving biological control by combining biocontrol agents each with several mechanism of diseased suppression. Phytopathology, 92, 976–985.

    Article  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Hermosa, R., Cardoza, R. E., Rubio, M. B., Gutiérrez, S., & Monte, E. (2014). Secondary metabolism and antimicrobial metabolites of Trichoderma. In Biotechnology and biology of Trichoderma (pp. 125–137). Elsevier.‏

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87, 4–10.

    Article  CAS  Google Scholar 

  • Jambhulkar, P. P., Sharma, P., Manokaran, R., Lakshman, D. K., Rokadia, P., & Jambhulkar, N. (2018). Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. European Journal of Plant Pathology, 152(3), 747–757.

    Article  Google Scholar 

  • Jangir, M., Sharma, S., & Sharma, S. (2019). Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control, 138, 104069.‏

  • Janousek, C. N., Lorber, J. D., & Gubler, W. D. (2009). Combination and rotation of bacterial antagonists to control powdery mildew on pumpkin. Journal of Plant Diseases and Protection, 116, 260–262.

    Article  Google Scholar 

  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57, 315–319.

    Article  CAS  Google Scholar 

  • Karuppiah, V., Sun, J., Li, T., Vallikkannu, M., & Chen, J. (2019). Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Frontiers in Microbiology, 10, 1068.

    Article  Google Scholar 

  • Khan, A. R., El-Komy, M. H., Ibrahim, Y. E., Hamad, Y. K., Molan, Y. Y., & Saleh, A. A. (2020). Organic Management of Tomato Fusarium wilt using a Native Bacillus subtilis Strain and Compost Combination in Saudi Arabia. International Journal of Agriculture and Biology, 23, 1003–1012.

    CAS  Google Scholar 

  • Konappa, N., Krishnamurthy, S., Siddaiah, C. N., Ramachandrappa, N. S., & Chowdappa, S. (2018). Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum. Egyptian Journal of Biological Pest Control, 28, 1–11.

    Article  Google Scholar 

  • Levy, Y., Benderly, M., Cohen, Y., Gisi, U., & Bassand, D. (1986). The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. EPPO Bulletin, 16, 651–657.

    Article  Google Scholar 

  • Lievens, B., Claes, L., Vakalounakis, D. J., Vanachter, A. C., & Thomma, B. P. (2007). A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environmental Microbiology, 9, 2145–2161.

    Article  CAS  Google Scholar 

  • Liu, K., McInroy, J. A., Hu, C. H., & Kloepper, J. W. (2018). Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Disease, 102, 67–72.

    Article  Google Scholar 

  • Martínez-Medina, A., Alguacil, M. D. M., Pascual, J. A., & Van Wees, S. C. (2014). Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. Journal of Chemical Ecology, 40, 804–815.

    Article  Google Scholar 

  • Martinez, A., Obertello, M., Pardo, A., Ocampo, J. A., & Godeas, A. (2004). Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza, 14, 79–84.

    Article  Google Scholar 

  • Mei, L. I., Hua, L. I. A. N., Su, X. L., Ying, T. I. A. N., Huang, W. K., Jie, M. E. I., & Jiang, X. L. (2019). The effects of Trichoderma on preventing cucumber Fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture, 18, 607–617.

    Article  Google Scholar 

  • Mendoza García, R. A., Ten Hoopen, G. M., Kass, D. C. J., Sánchez Garita, V. A., & Krauss, U. (2003). Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control, 27, 210–227.

    Article  Google Scholar 

  • Morán-Diez, M. E., Carrero-Carrón, I., Rubio, M. B., Jiménez-Díaz, R. M., Monte, E., & Hermosa, R. (2019). Transcriptomic analysis of Trichoderma atroviride overgrowing plant-wilting Verticillium dahliae reveals the role of a new M14 metallocarboxypeptidase CPA1 in biocontrol. Frontiers in Microbiology, 10, 1120.

    Article  Google Scholar 

  • Pavlou, G. C., & Vakalounakis, D. J. (2005). Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f.sp. radicis-cucumerinum, by lettuce soil amendment. Crop Protection, 24, 135–140.

    Article  Google Scholar 

  • Rojo, F. G., Reynoso, M. M., Ferez, M., Chulze, S. N., & Torres, A. M. (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection, 26, 549–555.

    Article  Google Scholar 

  • Rose, S., Parker, M., & Punja, Z. K. (2003). Efficacy of biological and chemical treatments for control of Fusarium root and stem rot on greenhouse cucumber. Plant Disease, 87, 1462–1470.

    Article  CAS  Google Scholar 

  • Samuels, G. J., Lieckfeldt, E. L. K. E., & Nirenberg, H. I. (1999). Trichoderma asperellum, a new species with warted conidia, and redescription of T. viride. SYDOWIA-HORN-, 51, 71–88.

    Google Scholar 

  • Singh, S. P., & Singh, H. B. (2012). Effect of consortium of Trichoderma harzianum isolates on growth attributes and Sclerotinia sclerotiorum rot of brinjal. Vegetable Science, 39, 144–148.

    Google Scholar 

  • Spadaro, D., & Gullino, M.L. (2005). Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 24, 601e613.

  • Tandon, A., Fatima, T., Gautam, A., Yadav, U., Srivastava, S., & Singh, P. C. (2018). Effect of Trichoderma koningiopsis on chickpea rhizosphere activities under different fertilization regimes. Open Journal of Soil Science, 8, 261–275.

    Article  CAS  Google Scholar 

  • Vanitha, S. C., Niranjana, S. R., & Umesha, S. (2009). Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology, 157, 552–557.

    Article  CAS  Google Scholar 

  • Yan, G., Fan, X., Peng, M., Yin, C., Xiao, Z., & Liang, Y. (2020). Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Frontiers in Plant Science, 11, 260.

    Article  Google Scholar 

  • Yu, C., & Luo, X. (2020). Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biological Control, 150, 104352.‏

  • Yu, Z., Wang, Z., Zhang, Y., Wang, Y., & Liu, Z. (2021). Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiological Research, 242, 126596.‏

  • Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 40, 779–784.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No. RG-1440-029.

Author information

Authors and Affiliations

Authors

Contributions

MHK designed and performed the experiments, collected the data and wrote the manuscript. RMQ helped in greenhouse experiments. YEI, AAA,and MAS investigation, review & editing the manuscript. All authors reviewed the manuscript critically.

Corresponding author

Correspondence to Mahmoud H. El-Komy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Authors declared that this manuscript has not published elsewhere. All authors read and approved the final version of this manuscript. The authors declare that the present work was developed without any potential conflict of interest, with no human or animal participants.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5432 kb)

Supplementary file2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Komy, M.H., Al-Qahtani, R.M., Ibrahim, Y.E. et al. Soil application of Trichoderma asperellum strains significantly improves Fusarium root and stem rot disease management and promotes growth in cucumbers in semi-arid regions. Eur J Plant Pathol 162, 637–653 (2022). https://doi.org/10.1007/s10658-021-02427-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02427-0

Keywords

Navigation