Skip to main content
Log in

Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Solanum commersonii is a wild species related to the cultivated potato. Some S. commersonii genotypes have been proven to be resistant to the pathogenic bacteria Ralstonia solanacearum, which causes damage in potato and other economically important crops. Here an expression analysis of the response of a resistant S. commersonii genotype against R. solanacearum was performed using microarrays. The aims of this work were to elucidate the molecular processes involved in the interaction, establish the timing of the response, and contribute to identify genes related to the resistance. The response to the treatment was already initiated at 6 h post-inoculation (hpi) and was established at 24 hpi; during this period, a high number of genes was differentially expressed and several candidate genes for the resistance of S. commersonii to R. solanacearum were identified. At an early stage, the photosynthetic process was highly repressed and several genes encoding proteins related to reactive oxygen species (ROS) production were differentially expressed. The induction of ERF and ACC-oxidase genes related to the ethylene pathway and PR1 related to the salicylic acid pathway suggested the induction of both pathways, and back up the previously reported hemibiotrophic nature of the pathogen. Five genes related to plant defence and observed to be differentially expressed at the first two time points were validated by real time PCR. This work gives a glimpse to the molecular processes involved in S. commersonii resistance and identifies the species as a valuable genetic source for potato breeding against bacterial wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., et al. (2010). Ethylene-Induced Stabilization of Ethylene insensitive 3 and EIN3-Like1 is mediated by proteasomal degradation of EIN3 binding f-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell, 22, 2384–2401.

    Article  PubMed  CAS  Google Scholar 

  • Barone, A., Sebastiano, A., Carputo, D., Della Rocca, F., & Frusciante, L. (2001). Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosum gene pool. Theoretical and Applied Genetics, 102, 900–907.

    Article  CAS  Google Scholar 

  • Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.

    Article  PubMed  CAS  Google Scholar 

  • Boller, T., & Felix, G. (2009). A renaissance of elicitors: perception of Microbe-Associated Molecular Patterns and danger signals by Pattern-Recognition Receptors. Annual Reviews of Plant Biology, 60, 379–406.

    Article  CAS  Google Scholar 

  • Bradshaw, J. E., Bryan, G. J., & Ramsay, G. (2006). Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Research, 49, 49–65.

    Article  Google Scholar 

  • Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J., & Besse, P. (2006). Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theoretical and Applied Genetics, 113, 110–121.

    Article  PubMed  CAS  Google Scholar 

  • Carputo, D., Barone, A., Cardi, T., Sebastiano, A., Frusciante, L., & Peloquin, S. J. (1997). Endosperm balance number manipulation for direct in vivo germplasm introgression to potato from a sexually isolated relative (Solanum commersonii Dun.). Proceedings of the National Academy of Sciences, 94, 12013–12017.

    Article  CAS  Google Scholar 

  • Chen, Y. Y., Lin, Y. M., Chao, T. C., Wang, J. F., Liu, A. C., Ho, F. I., et al. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum, 136, 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676.

    Article  PubMed  CAS  Google Scholar 

  • Dalla Rizza, M., Vilaró, F. L., Torres, D. G., & Maeso, D. (2006). Detection of PVY extreme resistance genes in potato germplasm from the Uruguayan breeding program. American Journal of Potato Research, 83, 75–82.

    Google Scholar 

  • Deslandes, L., Olivier, J., Theulières, F., Hirsch, J., Feng, D. X., Bittner-Eddy, P., et al. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Sciences, 99, 2404–2409.

    Article  CAS  Google Scholar 

  • Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10, 366–371.

    Article  PubMed  CAS  Google Scholar 

  • Feys, B. J., & Parker, J. E. (2000). Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 16, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Fofana, B., Banks, T. W., McCallum, B., Strelkov, E. S., & Cloutier, S. (2007). Temporal gene expression profiling of the wheat leaf rust pathosystem using cDNA microarray reveals differences in compatible and incompatible defence pathways. International Journal of Plant Genomics. doi:10.1155/2007/17542.

    PubMed  Google Scholar 

  • French, D. R., & De Lindo, L. (1982). Resistance to Pseudomonas solanacearum in Potato: specificity and Temperature Sensitivity. Phytopathology, 72, 1408–1411.

    Article  Google Scholar 

  • Genin, S., & Boucher, C. (2004). Lessons learned from the genome analysis of Ralstonia solanacearum. Annual Reviews of Phytopathology, 42, 107–134.

    Article  CAS  Google Scholar 

  • Ghareeb, H., Bozsó, Z., Ott, P. G., Repenning, C., Stahl, F., & Wydra, K. (2011). Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology, 75, 83–89.

    Article  CAS  Google Scholar 

  • Gibly, A., Bonshtien, A., Balaji, V., Debbie, P., Martin, G. B., & Sessa, G. (2004). Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions, 17, 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, M. (2010). La resistencia a la marchitez bacteriana de Solanum commersonii Dun. y su utilización en el mejoramiento genético de papa. Master Thesis. Montevideo: Universidad de la República.

    Google Scholar 

  • Gyetvai, G., Sønderkær, M., Göbel, U., Basekow, R., Ballvora, A., Imhoff, M., et al. (2012). The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE Analysis. PloS One, 6, e31526.

    Article  Google Scholar 

  • Habib, H., & Fazili, K. (2007). Plant protease inhibitors: a defense strategy in plants. Biotechnology and Molecular Biology Reviews, 2, 68–85.

    Google Scholar 

  • Hämäläinen, J. H., Watanabe, K. N., Valkonen, J. P. T., Arihata, A., Plaisted, R. L., Pehu, E., et al. (1997). Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 94, 192–197.

    Article  Google Scholar 

  • Hammond-Kosack, K. E., & Jones, D. G. J. (1996). Resistance Gene-dependent plant defense responses. The Plant Cell, 8, 1773–1791.

    PubMed  CAS  Google Scholar 

  • Hirsch, J., Deslandes, L., Feng, D. X., Balagué, C., & Marco, Y. (2002). Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology, 92, 1142–1148.

    Article  PubMed  Google Scholar 

  • Hu, J., Barlet, X., Deslandes, L., Hirsch, J., Feng, D. X., Somssich, I., et al. (2008). Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS One, 3, e2589.

    Article  PubMed  Google Scholar 

  • Ibrahim, H. M. M., Hosseini, P., Alkharouf, N. W., Hussein, E. H. A., El Kader Y Gamal El-Din, A., Aly, M. A. M., & Matthews, B. F. (2011). Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics, 12, 220.

  • Ishihara, T., Mitsuhara, I., Takahashi, H., & Nakaho, K. (2012). Transcriptome analysis of quantitative resistance- specific response upon Ralstonia solanacearum infection in tomato. PLoS One, 7, e46763.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H. G., Foley, R. C., Oñate-Sanchez, L., Lin, C., & Singh, K. B. (2003). Target genes for OBP3, a Dof transcription factor, includes novel basic helix-loop-helix domain proteins inducible by salicylic acid. The Plant Journal, 35, 362–372.

    Article  PubMed  CAS  Google Scholar 

  • Kim-Lee, H., Moon, J. S., Hong, Y. J., Kim, M. S., & Cho, H. M. (2005). Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. American Journal of Potato Research, 82, 129–137.

    Article  Google Scholar 

  • Kloosterman, B., De Koeyer, D., Griffiths, R., Flinn, B., Steuernagel, B., Scholz, U., et al. (2008). Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Functional & Integrative Genomics, 8, 329–340.

    Article  CAS  Google Scholar 

  • Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, P., et al. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology. doi:10.1038/nbt.1613.

    PubMed  Google Scholar 

  • Laferriere, L. T., Helgeson, J. P., & Allen, C. (1999). Fertile S.tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by R. solanacearum. Theoretical and Applied Genetics, 98, 1272–1278.

    Article  Google Scholar 

  • Lahaye, T. (2002). The Arabidopsis RRS1-R disease resistance gene – uncovering the plant’s nucleus as the new battlefield of plant defense? Trends in Plant Science, 7, 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Lai, Z., Vinod, K. M., Zheng, Z., Fan, B., & Chen, Z. (2008). Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biology, 8, 68.

    Article  PubMed  Google Scholar 

  • Laird, J., Armengaud, P., Giuntini, P., Laval, V., & Milner, J. J. (2004). Inappropriate annotation of a key defence marker in Arabidopsis: will the real PR-1 please stand up? Planta, 219, 1089–1092.

    Article  PubMed  CAS  Google Scholar 

  • Malcolmson, J. F., & Black, W. (1966). New R genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica, 15, 199–203.

    Article  Google Scholar 

  • Massa, A. N., Childs, K. L., Lin, H., Bryan, G. J., Giuliano, G., & Buell, C. R. (2011). The transcriptome of the reference potato genome Solanum tuberosum group phureja clone DM1-3 516R44. PLoS One, 6, e26801.

    Article  PubMed  CAS  Google Scholar 

  • McGee, J. D., Hamer, J. E., & Hodges, T. K. (2001). Characterization of PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant–Microbe Interaction, 14, 877–886.

    Article  CAS  Google Scholar 

  • Montesano, M., Brader, G., & Palva, E. T. (2003). Pathogen derived elicitors: searching for receptors in plants. Molecular Plant Pathology, 4, 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Mosquera, G., Giraldo, M. C., Khang, C. H., Coughlan, S., & Valent, B. (2009). Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1–4 as biotrophy-associated secreted proteins in rice blast disease. The Plant Cell, 21, 1273–1290.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56, 2907–2914.

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia, M., Roby, D., Dumas, C., & Cock, J. M. (1997). Rapid induction by wunding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. The Plant Cell, 9, 49–60.

    PubMed  CAS  Google Scholar 

  • Pavek, J. J., & Corsini, D. L. (2001). Utilization of potato genetic resources in variety development. American Journal of Potato Research, 78, 433–441.

    Article  Google Scholar 

  • Porta, H., & Rocha-Sosa, M. (2002). Plant lipoxygenases: physiological and molecular features. Plant Physiology, 130, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., & Trigalet, A. (2000). Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology, 146, 1679–1692.

    PubMed  CAS  Google Scholar 

  • Restrepo, S., Myers, K. L., del Pozo, O., Martin, G. B., Hart, A. L., Buell, C. R., et al. (2005). Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 18, 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques, 34, 374–378.

    PubMed  CAS  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., et al. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences, 97, 11655–11660.

    Article  CAS  Google Scholar 

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.

    Google Scholar 

  • Siri, M. I., Villanueva, P., Pianzolla, M. J., Franco Fraguas, L., Galvan, G., Acosta, M., et al. (2004). In vitro antimicrobial activity of different accessions of Solanum commersonii Dun. from Uruguay. Potato Research, 47, 127–138.

    Article  Google Scholar 

  • Siri, M. I., Sanabria, A., & Pianzzola, M. J. (2011). Genetic diversity and aggressiveness of Ralstonia solanacearum strains causing bacterial wilt of potato in Uruguay. Plant Disease, 95, 1292–1301.

    Article  Google Scholar 

  • Tan, X., Meyers, B. C., Kozik, A., West, M. A., Morgante, M., St Clair, D. A., et al. (2007). Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, 7, 56.

    Article  PubMed  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., & Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genetics, 5, e1000772.

    Article  PubMed  Google Scholar 

  • Wang, B., Liu, J., Tian, Z., Song, B., & Xie, C. (2005a). Monitoring the expression patterns of potato genes associated with quantitative resistance to late blight during Phytophthora infestans infection using cDNA microarrays. Plant Science, 169, 1155–1167.

    Article  CAS  Google Scholar 

  • Wang, X., El Hadrami, A., Adam, L. R., & Daayf, F. (2005b). Local and distal gene expression of PR-1 and PR-5 in potato leaves inoculated with isolates from the old (US-1) and the new (US-8) genotypes of Phytophthora infestans (Mont.) de Bary. Environmental and Experimental Botany, 57, 1–11.

    Article  Google Scholar 

  • Wenneker, M., Verdel, M. S. W., Groeneveld, R. M. W., Kempenaar, C., van Beuningen, A. R., & Janse, J. D. (1999). Ralstonia (Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts: First report on stinging nettle (Urtica dioica). European Journal of Plant Pathology, 105, 307–315.

    Article  Google Scholar 

  • Xu, X., Chen, C., Fan, B., & Chen, Z. (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 18, 1310–1326.

    Google Scholar 

  • Zhang, H., Zhang, D., Chen, J., Yang, Y., Huang, Z., Huang, D., Wang, X. C., & Huang, R. (2004). Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Molecular Biology, 5, 825–834.

  • Zhu, B., Chen, T. H. H., & Li, P. H. (1995). Activation of two Osmotin-like protein genes by abiotic stimuli and funga1 pathogen in transgenic potato plants. Plant Physiology, 108, 929–937.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank María Inés Siri, Analía Sanabria and Maria Julia Pianzzola who provided us with the virulent strain UY036 of bacteria. We wish to thank Silvia Restrepo who helped us in the design of the experiment, and Glenn Bryan, Pete Hedley, Salomé Prat and Roland Schafleitner for the invaluable advices and support in the result analysis. The project was financed by FAO (International treaty on plant genetic resources for food and agriculture). This research was carried out in the context of a CYTED program. Rafael Narancio was financed by a Master assistantship of the “Agencia Nacional de Investigación e Innovación (ANII) of Uruguay”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Narancio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

List of up and down-regulated genes at 6 h post inoculation (hpi). Only genes showing a significant 2-fold change and p-values lower than 0.05 were represented. NA not annotated genes (XLSX 93 kb)

Online resource 2

List of up and down-regulated genes at 24 h post inoculation (hpi). Only genes showing a significant 2-fold change and p-values lower than 0.05 were represented. NA not annotated genes (XLSX 29 kb)

Online resource 3

List of up and down-regulated genes at 48 h post inoculation (hpi). Only genes showing a significant 2-fold change and p-values lower than 0.05 were represented. NA not anotated genes (XLSX 151 kb)

Online resource 4

List of up and down-regulated genes at 120 h post inoculation (hpi). Only genes showing a significant 2-fold change and p-values lower than 0.05 were represented. NA not annotated genes (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narancio, R., Zorrilla, P., Robello, C. et al. Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum . Eur J Plant Pathol 136, 823–835 (2013). https://doi.org/10.1007/s10658-013-0210-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0210-y

Keywords

Navigation